-
0 引言
数千年来,陆生动植物一直是天然产物(药物)的重要来源,部分药用动植物成分或衍生物已被证明具有确切疗效,为许多疾病如癌症、艾滋病、阿尔茨海默症、疟疾和疼痛等的治疗做出重要贡献。随着陆生资源日益枯竭,新分子实体药物开发难度日益加大,无法应对不断增多的威胁人类生命健康的疾病,因此寻找新的药源成为解决此问题的关键“钥匙”。
海洋生态系统的高压、高盐、缺氧、低光照等特殊性造就了海洋生物具有巨大的生物多样性和独特的化学多样性。海洋天然产物复杂的次生代谢产物、独特的结构及特异高效的生物活性[1-8]点燃了医药学者以其作为新药开发的兴趣。澳大利亚学者Carroll及其合作者总结了2017年477篇关于海洋天然产物的论文,其中重点报道的新化合物就有1490种[6]。目前,先进的深海作业技术、提取分离技术、分子修饰技术、海洋生物技术、基因工程技术[9]特别是越来越强大的有机合成技术[10-12],为解决这种天然产物的“药源”不足问题提供了希望,这也为海洋药物的开发提供了新的机遇。
开发“蓝色药库”成为现今世界医药工业发展的重要方向,各制药强国均在不断加大投入,如美国国家研究委员会(National Research Council)和国立癌症研究所(National Cancer Institute)、日本海洋生物技术研究院(Japanese Marine Biotechnology Institute)及日本海洋科学技术中心(Japan Marine Science and Technology Center)、欧共体海洋科学和技术(Marine Sciences and Technology)等机构每年均投入上亿美元作为海洋药物开发研究的经费[2-3,13]。目前国内外共有49种来自海洋的活性物质或其衍生物被批准上市或进入临床(见表1)。其中来自海洋多孔动物门(海绵)的活性物质14个(上市3个、II期5个,I期4个,折戟I期临床2个);来自于海洋软体动物门的活性物质10个(上市2个、III期1个、II期4个,I期3个);来自棘皮动物门的活性物质1个(III期);来自海洋尾索动物门的活性物质4个(上市2个、III期1个、折戟II期临床1个);来自节肢动物门的活性物质2个(均处于II期);来自海洋纽形动物门的活性物质1个(折戟II期临床);来自海洋藻类的活性物质7个(上市5个、III期1个,I期1个);来自海洋真菌、放线菌的活性物质4个(上市2个、III期2个);来自海洋脊椎动物(鱼类)的活性物质6个(目前上市3个,III期2个,II期1个)。这些活性物质的治疗范围涉及到众多疾病杂症领域,显示出独特疗效。本文整理了目前已成药或进入不同临床研究阶段的海洋活性物质的来源、特异结构、药理活性、作用机理等,以期能为医药工作者提供新的研究思路,推进海洋药物学科的发展,为人类的健康事业做出贡献。
续表1(1) 来自海洋生物的药物和处于不同临床阶段的活性物质
Table 1(1) An overview of marine drugs on the market and in clinical trials
续表1(2) 来自海洋生物的药物和处于不同临床阶段的活性物质
Table 1(2) An overview of marine drugs on the market and in clinical trials
-
1 来源于多孔动物门(海绵)的海洋药物
-
1.1 阿糖胞苷(Cytarabine /Ara-C)
阿糖胞苷(Cytarabine,Ara-C,见图1A)是以来源于加勒比海海绵Cryptotethia crypta(见图1a)的1种特异海绵核苷类化合物为先导合成的衍生物,由加利福尼亚大学伯克利分校的Richard Walwick等于1959年首次合成,是第1个应用于临床的海洋抗肿瘤药物,1969年6月由美国食品药品监督管理局(FDA)批准上市。阿糖胞苷为嘧啶类抗代谢药物,可通过抑制细胞DNA合成来干扰细胞增殖。阿糖胞苷进入人体后经激酶磷酸化可转化为阿糖胞苷二磷酸和三磷酸,其中,阿糖胞苷二磷酸抑制二磷酸胞苷向二磷酸脱氧胞苷的转化,而阿糖胞苷三磷酸则可抑制DNA聚合酶合成[15]。阿糖胞苷主要用于急性白血病的治疗,对急性粒细胞白血病(AML)疗效最好,柔红霉素+阿糖胞苷的3+7联合诱导治疗方案是治疗AML的标准方案[16-18]。
-
1.2 阿糖腺苷(Vidarabine/Ara-A)
阿糖腺苷(Vidarabine,Ara-A,见图1B)为嘌呤核苷同系物,是以隐南瓜海绵Tethya crypta(见图1b)中分离出的2种核苷spongothymidine和spongouridline为先导进行结构优化合成得到的。该药物于1960年在斯坦福研究所的Bernard Randall Baker实验室首次合成,作为抗病毒药物,阿糖腺苷早在1976年就被FDA批准进入市场[19]。
阿糖腺苷是1种广谱的DNA病毒抑制剂,在体内迅速转换为三磷酸阿糖腺苷(Ara-ATP),竞争性抑制病毒的脱氧腺苷三磷酸(dATP),从而抑制病毒DNA的合成。Ara-ATP也抑制RNA多聚腺苷酸化,防止HIV-1和其他逆转录病毒必需的多聚腺苷酸化和S-腺苷高半胱氨酸水解,防止转甲基反应。阿糖腺苷可治疗多种病毒性疾病,临床上用于治疗单纯疱疹病毒性脑炎、新生儿单纯疱疹(如皮肤黏膜感染、局限性中枢神经系统感染和播散性单纯疱疹)、带状疱疹和慢性乙型肝炎,也被用于免疫功能缺陷者的水痘病毒感染、婴儿先天性巨细胞病毒感染和免疫缺陷者巨细胞病毒感染的治疗[20]。Suita等[21]发现阿糖腺苷可抑制儿茶酚胺诱发的房颤或室性心律失常。Seifert等[22]研究发现阿糖腺苷可选择性抑制腺苷酸环化酶5(AC5)的作用,从而使用阿糖腺苷治疗人类心力衰竭成为可能。注射用单磷酸阿糖腺苷有可能引起严重的过敏反应,如过敏性休克等,还可能引起精神障碍、神经系统和血液系统损害,主要不良反应表现有震颤、四肢麻木、惊厥、意识障碍、幻觉、错乱、骨髓抑制以及红细胞、白细胞、血小板数量减少等[23]。
-
1.3 甲磺酸艾日布林(Eribulin,E7389)
Eribulin(见图1C1)是从海绵Halichondria okadai(见图1c)中分离得到的halichondrin B大环骨架上的酯键替换为酮基得到的衍生物,其结构比halichondrin B简单但仍保持其活性[24]。与其他微管抑制剂不同,eribulin将微管蛋白隔离成无功能的聚集体,以阻止有丝分裂纺锤体的形成[25],导致细胞复制大部分在G2-M期受到抑制,延长有丝分裂时间,从而导致细胞凋亡而发挥作用。Eribulin还可以通过提高上皮标志物在肿瘤中的表达水平,促进上皮-间质细胞转化(EMT)转换为间质-上皮细胞转化(MET),减少细胞迁移和侵袭能力,逆转EMT向MET转化过程,并对肿瘤细胞进行预处理以降低其定植能力[26]。
Eribulin是FDA批准的治疗乳腺癌(2010年11月)和脂肪肉瘤(2016年1月)的药物[27]。Cosimo等[28]给予43例原发性三阴性乳腺癌≥2 cm患者4个周期的60 mg/m2阿霉素和200 mg/m2的紫杉醇,随后给予4个周期1.4 mg/m2的eribulin,发现eribulin适用于以前使用蒽环类药物和紫杉烷治疗的转移性乳腺癌患者[29]。Eribulin、trastuzumab、pertuzumab的ETP联合疗法具有良好的疗效和安全性,是治疗HER2阳性转移性乳腺癌(MBC)的一线疗法[28,30-31]。Takahashi等[32]经实验研究观察发现eribulin对体外和体内胶质母细胞瘤的细胞增殖具有抑制作用,作用机制可能与启动子突变有关,表明eribulin可以作为1种有效的抗胶质母细胞瘤药物。
-
1.4 Zalypsis(PM00104)
Zalypsis(PM00104)(见图1D)是从太平洋海绵与被囊类裸腮动物Joruna funebris(见图1d)的皮肤和黏液中分离得到的1种新型DNA结合型生物碱,它可通过与已知的DNA三链的鸟嘌呤结合形成DNA加合物最终导致DNA双链的断裂,S期分裂停止,从而诱导肿瘤细胞死亡[33]。Massard等[34-38]以49位晚期实体瘤患者为对象,以3周为1个周期,每周期持续1 h静脉注射进行I期临床实验。推荐用于II期临床的Zalypsis最佳剂量为2.0 mg/m2,相关的副作用大多表现为疲劳、恶心和呕吐。González-Sales等[39]对患有嗜中性白血球减少症的肿瘤病人静脉注射Zalypsis,表明其给药剂量与给药间隔对嗜中性白血球减少症的严重性和持续性的程度减轻有决定性作用,其主要的药动学参数值多与用药剂量呈正线性相关。II期临床现正进行zalypsis对肉瘤、子宫内膜与子宫颈瘤、骨髓瘤等多种人类肿瘤的治疗研究,zalypsis对这些疾病均表现出一定的疗效。另外,zalypsis对于瞬变及易控的骨髓抑制和转氨酶增加也有作用[40-42]。
-
1.5 KRN7000
KRN7000(见图1E)是1994年从冲绳海域海绵Agelas mauritianus(见图1e)中分离得到的天然产物agelasphin的衍生物半乳糖神经酰胺衍生物,它具有广泛的生物活性,如抗肿瘤、抗结核病、抗病毒、抗真菌、消炎以及治疗自身免疫性疾病(如系统性红斑狼疮、糖尿病)等,可作为iNKT免疫细胞(鼠胸腺细胞抑制T细胞抗原接收器的物质)的配基被识别[43]。给顽固性实体瘤患者静脉注射KRN7000,结果表明用KRN7000脉冲法作用于枝细胞能产生更好的抗肿瘤活性,同时可在机体肺部产生更多的iNKT细胞,该脉冲法亦可引起有益的临床免疫应答活性,但其对细胞剂量和给药途径有明显的依赖性[44]。KRN7000还可对多种疫苗产生显著的辅助效果[45]。Schneiders等[46]研究发现,KRN7000对人类细胞并不会像对小鼠细胞一样产生连续的抗病毒效应及抗慢性B\\C细胞感染肝炎,分析原因可能是由于人类肝中iNKT细胞明显少于小鼠。
-
1.6 IPL576092
IPL576092(见图1F1)衍生于Contignasterol(见图1F2)。Contignasterol是加拿大研究者在1899年从巴布亚新几内亚海岸外收集的海绵Petrosia contignata Theile(见图1f)标本中分离出来的1种具有生物活性的类固醇,研究表明其具有治疗哮喘和炎症性疾病的潜在价值[47-49],后经加拿大Inflazyme公司开发成平喘药Contignasterol(考替特罗),该药有较好的平喘和抗炎活性,但结构复杂且药代动力学存在不稳定性,商业价值不高。Shen等[50-51]对其结构深入研究得到它的结构类似物IPL576092,该类似物结构简单且有独特的侧链功能。
在过敏原诱导的肺部炎症的啮齿动物模型中,IPL576092以5 mg/kg的口服剂量引起80%的炎症反应抑制,而口服剂量为50 mg/kg的contignasterol在此模型引起60%的反应抑制,体外研究中,IPL576092显示炎症介质的释放显著减少,包括肿瘤坏死因子、己糖胺酶、前列腺素-D2和白细胞介素5,目前在II期人体临床试验中,IPL576092被认为是1种新的安全有效的抗哮喘药物,其作为治疗哮喘的潜在新疗法的评价仍在继续[52]。
-
1.7 LAQ824(NVP-LAQ824)
LAQ824(见图2A)是从海绵Psammaplysilla sp.(见图2a)等生物中分离到的肿瘤化合物Psammaplins的羟基戊酸衍生物,是1种组蛋白脱乙酰酶抑制剂(HDACi)。LAQ824可使白血病细胞中产生较多活性氧,诱导P21及pRb抑癌基因脱磷酸化,引起酸性硝酸酯酶依赖性神经酰胺的生成与增多,导致线粒体损伤等,最终诱导细胞凋亡,LAQ824诱导肿瘤细胞和转化细胞凋亡,但不诱导正常细胞凋亡;同时其在肿瘤细胞增殖和血管生成的过程中可影响多种通路,能有效抑制结肠癌、卵巢癌、肺癌、骨髓瘤等实体瘤细胞的增殖,同时对白血病和淋巴癌等血液系统恶性肿瘤也有治疗作用[23]。临床I期实验表明,LAQ824在组蛋白乙酰酶化聚集的剂量下有较好的耐受性。目前用LAQ824治疗多发性骨髓瘤已进入II期临床试验。
-
1.8 Plocabulin(PM060184)
PM060184(Cas 960210-99-5,见图2B)是一类新颖的聚酮化合物,来源于马达加斯加沿海海域的海绵Lithoplocamia lithistoides(见图2b),现通过全合成制备,由西班牙PharmaMar开发,用于治疗实体瘤、乳腺癌、胃肠道间质瘤等[54]。其作用机制研究表明,PM060184能够明显破坏细胞的微管蛋白和有丝分裂并抑制肿瘤细胞株的增殖[35];其能以独特的高亲和力来和α,β-微管二聚体结合,抑制微管的聚合反应;除此之外,PM060184还可以克服P-糖蛋白引起的体内耐药性。通过研究分子与细胞间的关系,发现PM060184作为1种微管聚合抑制剂能降低细胞内59%的微管动态性,有趣的是该药物能在相似的程度上抑制微管变短和增长,这种行为可以影响细胞的分裂间期和有丝分裂。这些作用与经典的细胞凋亡途径不同,与细胞分裂前中期的抑制、半胱天冬酶依赖的细胞凋亡或者细胞多核的分裂间期状态有关。因此,PM060184代表一类新型的微管结合剂,有望成为1种抗癌药物[56]。
2011年,PharmaMar SA公司宣布开始进行PM060184的临床I期研究,研究对象主要为晚期的实体瘤患者。2018年,PharmaMar公司正式启动了PM060184针对晚期或转移性结肠癌的II期临床治疗,病人将每3周在第1、8天静脉注射9.3 mg/m2剂量的PM060184,评估其疗效。
-
1.9 Taltobulin (HTI-286)
Taltobulin(HTI-286,见图2C1)是hemiasterlin中N-甲基吲哚环被苯基取代的合成类似物,hemiasterlin是从海洋海绵Hemiasterella minor(见图2c)中分离出来的天然产物,是由3个空间拥塞的氨基酸组成的三肽家族中的一员,hemiasterlin及其衍生物是有效的抗有丝分裂剂,通过与Vinca-肽结合位点结合有效抑制微管蛋白聚合。Taltobulin与微管蛋白结合的位点与Vinca结合位点接近但不同,HTI-286在1个独特的位点与α微管蛋白异二聚体结合,该点似乎位于微管蛋白亚基的界面[57-58]。HTI-286在极低浓度下就能干扰纺锤体微管动力学,在体内和体外对紫杉醇耐药的细胞系都表现出比hemiasterlin更强的活性。与紫杉烷或常规化学治疗药物包括去甲肾上腺素C相比,HTI-286对膀胱癌更具有优势,因为它是P-糖蛋白(MDR1)的不良底物,从而降低了多药耐药,并在紫杉醇和长春新碱无效的情况下抑制了表达P-糖蛋白的异种肿瘤移植物的生长[59-60]。HTI-286用于治疗晚期恶性实体瘤如皮肤癌、乳腺癌、前列腺癌、脑癌和结肠癌的作用机制需进一步研究,目前已经在患有晚期实体瘤的患者中完成了开放标记的I期试验。
-
1.10 Hemiasterlin(E7974)
Hemiasterlin(E7974,见图2C2)是从几种海洋海绵Hemiasterella minor(见图2c)如小海绵体中分离出来的1种三肽天然产物,在其结构上进行优化合成各种类似物,检测它们的体内体外抗肿瘤活性,最终发现了含N-异丙基-D-哌啶酸的派生物E7974是1种有效的癌细胞生长抑制剂,在多药耐药癌细胞和异种移植瘤模型中保留了很强的活性,且对P糖蛋白介导的药物外排敏感性低[61]。E7974现处于I期临床研究阶段,人们主要评价了其在顽固的实体肿瘤中的应用。在临床I期研究方面显示E7974最常见的严重不良反应为血液学毒性,同时伴随有嗜中性白血球减少、贫血和白血球减少、1级或2级的周围神经病变等。与紫杉烷相比,用E7974治疗的患者未出现3级或4级的腹泻、外周性水肿或周围神经病变,3级或4级的嗜中性白血球减少症和嗜中性白血球减少引起的发热的发生率相对比较少。Harada、Tsuchiya等人将E7974和抗-EGFR的单克隆抗体NCAB001联合使用,开发出1种抗体/药物共轭胶束(ADCM)系统。在该系统中,抗EGFR单克隆抗体NCAB001和E7974分别用作靶向传感器和ADCM(NC-6201)的有效载荷。对此NC-6201体外评估、体内功效和毒性研究的结果表明,NC-6201与未结合的NCB 001具有相似的抗原亲和力,对一组肿瘤细胞具有广泛的体外细胞毒作用。NC-6201能有效抑制裸鼠皮下表达EGFR的移植瘤,如BxPC-3(胰腺)和MDA-MB-231(三阴性乳腺)模型。NC-6201剂量在最大耐受剂量(MTD)的1/10或1/2达到有效。在EGFR(表皮生长因子)-NULL肿瘤模型中,NC-6201和含有E7974的非靶向胶束具有类似的肿瘤生长抑制作用。总的来说,NC-6201有效剂量的耐受性很好,没有明显的体质量下降,说明NC-6201有1个很好的治疗窗口。相对于E7974,NC-6201在大鼠和猴子中显示出未改变的毒性特征,具有降低毒性和改善治疗窗口的潜力[61],这为E7974的临床使用提供了1个新策略。
-
1.11 Discodermolide(XAA296A)
Discodermolide(见图2D)是Gunasekera等人在1990年从加勒比深海海绵Discodermia dissoluta(见图2d)中分离得到的以(+)-discodermolide为活性结构的多羟基内酯类化合物[62]。与紫杉醇类似,discodermolide具有稳定微管的作用,在缺少GTP或微管结合蛋白(MAPs)的情况下可诱导微管聚合,在细胞分裂中期至后期终止有丝分裂,是紫杉醇与微管结合的竞争性抑制剂[63]。由于其水溶性更强且不是P-糖蛋白(用于保护肿瘤细胞)的理想附着基质,使得它能抑制紫杉醇抗性的肿瘤细胞系生长并具有多药抗性,比紫杉醇更有研究价值[64]。Harbor Branch Oceanographic Institution公司在2004年进行的I期临床试验结果显示discodermolide的毒性很小[65]。Klein等[64]现正在进行该药的临床前药物发展计划,但由于从海绵中所提取的量较少,以及人工合成路线复杂,discodermolide的临床研究进展缓慢。
-
1.12 C52-halichondrin-B amine(E7130)
E7130(见图1C2)最早是从1种海洋冈田软海绵(Halichondria okadai)(见图1c)中提取衍生的具有潜在抗肿瘤活性的卤素类似物。2019年1月Eisai的科学家和哈佛大学的Kishi教授团队联合严格控制了31个不对称碳,实现了E7130的全合成,纯度大于99.8%,研究结果刊登在2019年《Scientific Reports》上[66]。
研究显示静脉输注E7130后,其可与微管蛋白vinca结构域结合,抑制微管蛋白的聚合和微管的组装,从而抑制有丝分裂纺锤体组装并诱导细胞周期停滞在G2/M期;此外,E7130还可以增加肿瘤内CD31阳性内皮细胞(血管重塑活性),并减少与α-SMA(平滑肌肌动蛋白)阳性癌症相关的成纤维细胞[66]。目前Eisai公司正启动I期临床(NCT03444701)评价E7130在晚期实体瘤患者治疗过程中的安全性及耐受性[67]。
-
1.13 LAF389
LAF389(见图2E)是1种结构新颖的bengamide B的合成类似物,是从斐济群岛的茉莉科海绵Jaspis digonoxea(见图2e)中分离出来的1个天然产物[68]。在细胞凋亡后的G0/G1和G2/M界面,bengamide类药物均能引起细胞周期阻滞。通过蛋白质组分析,LAF389的细胞内分子靶点已经被广泛研究,并且人类甲硫氨酸氨基肽酶的2种亚型都被认为是该化合物的靶点[69]。LAF389是1种有效的人细胞系单层细胞增殖抑制剂[70],在对某些标准细胞毒性药物无反应的肿瘤细胞系和具有不同耐药机制的肿瘤中具有活性。尽管LAF389是p-糖蛋白介导的体外多药耐药的底物,但p-糖蛋白过度表达对LAF389体外生长抑制的影响明显小于对紫杉醇生长抑制的影响。
动物实验表明,重复给药LAF389是有效的,并且耐受良好,2000年,人们开始了LAF389 I期临床研究。在6种不同的人实体瘤异种移植瘤中,人们观察到显著的肿瘤生长抑制,并且随着给药频率的增加而增加。LAF389预期的主要全身毒性是可逆性骨髓抑制(主要是淋巴细胞减少),对其他快速增殖组织如胃肠道、皮肤、男性生殖器官、肝脏和膀胱有影响。在大鼠体内,LAF389的消除主要是通过代谢介导的。母体化合物及其代谢物的排泄几乎在72 h内完成,并且通过肾和胆道途径的比例是大致相同的。由于缺乏明确的临床疗效证据,出于安全考虑,LAF389的I期临床研究终止[71]。
-
1.14 Girolline(RP 49532A)
Girolline(见图2F)是1种从新喀里多尼亚采集的海绵Cymbastela cantharella(见图2f)(之前命名为Peudaxinyssa cantharella)中提取得到的具有抗肿瘤活性的2-氨基咪唑类衍生物,是1种蛋白合成抑制剂。在体内蛋白合成过程中,Girolline可特异性地影响蛋白酶体补充P53蛋白,抑制终止步骤的反应;在多种肿瘤细胞系中可诱导G2及M期细胞周期阻滞[72]。
在临床前筛选试验中,giolline在体外对获得性阿霉素耐药的小鼠白血病p388细胞和人实体瘤细胞株具有显著的抗肿瘤活性,在生物化学的研究中,已经证明girolline可以抑制蛋白质合成而不影响转录[73]。在I期临床试验研究中,对于12名晚期难治性实体瘤患者每3周24 h静脉滴注girolline,剂量为3~15 mg/m2。剂量限制性毒性为迟发性低血压和严重乏力,MTD为15 mg/m2,在所有剂量的输液过程中都会出现短暂的恶心和呕吐。大多数患者在3 mg/m2以上的剂量下,凝血酶原时间和活化部分凝血活酶时间轻度可逆延长,未见抗肿瘤活性。Girolline的毒性特征使其临床研究已被终止[74]。
-
2 来源于软体动物门的海洋药物
软体动物门是无脊椎动物的一大类群,为海洋动物界中的第二大门,种数不少于13万种。这些软体动物主要依赖次生代谢产物形成的化学防御机制对抗天敌的捕食以求得生存。这种策略为人类从自然界寻找某种具有生物活性的化合物提供了1条简洁、有效的途径,在此基础上无疑将更容易发现新的活性天然产物,大大提高新药先导化合物的发现几率。截至目前,来自于海洋软体动物门的活性物质10个,其中成功上市2个,处于III期临床1个、II期临床4个,I期临床3个。
-
2.1 Vorsetuzumab Mafodotin(SGN-75)
SGN-75是抗CD-70的单抗h1F6(也称为SGN-70)与天然存在的抗微管介质单亚基auristatin F(MMAF,分离于印度洋海兔Dolabella auricularia,见图3)偶联形成的抗体-药物偶联剂(ADC)(见图3A),用来治疗肾细胞癌(RCC)和非霍奇金淋巴瘤(NHL),现在已经进入I期临床[75]。
SGN-75的作用机制与已经上市的抗体偶联药物SGN-35(Adcetris)相似,当SGN-75在细胞表面与CD70结合时,复合物内化并进入溶酶体,在溶酶体蛋白水解后,药物连结的cys-mcMMAF半胱氨酸复合物释放到细胞质中,cys-mcMMAF与微管蛋白的相互作用破坏细胞微管网络,使细胞在细胞周期G2/M期阻滞,阻止细胞分裂,最终导致细胞凋亡。SGN-75的体内外抗肿瘤活性和特异性已在表达CD70的淋巴瘤、多发性骨髓瘤、RCC、胶质母细胞瘤和胰腺癌模型中得到证实[76-77]。SGN-75的抗体骨架还保留免疫效应器功能(抗体依赖的细胞介导的细胞毒性作用和抗体依赖性细胞吞噬),由Fc结构域介导[76]。在重度预处理的肾癌和非霍奇金淋巴瘤患者中观察到适度的单药活性和一般可控制的不良反应。第3周给药比每周给药耐受性好,证实了其可靶向消融CD70阳性淋巴细胞[78]。
-
2.2 齐考诺肽(Ziconotide)
Ziconotide(见图4A)是美国犹他州大学生物系Olivera研究组从海洋软体动物芋螺Conus magus(见图4a)的毒液中分离得到的天然芋螺毒素的等价合成肽类化合物。Ziconotide结构中3个二硫键形成了1个结构稳定且不均匀的环,使其得以特异性地、选择性地、可逆地与N型电压依赖性钙通道(N-type voltage-dependent calcium channel,N-VDCC)结合,阻止神经元上的Ca2+涌入,阻断脊髓背角痛觉传入神经释放的早期痛觉神经递质,发挥镇痛作用[79]。
2004年伊兰(Elan)公司生产的ziconotide(商品名Prialt)通过鞘内注射用于治疗其他方法耐受或无效(如全身性镇痛、辅助治疗或鞘内输注吗啡)病人的慢性严重疼痛[79],是唯一经美国FDA及欧洲药品管理局(EMA)认可、且无阿片类成分的鞘内注射镇痛剂,现已被推荐为一线临床镇痛药物。Ziconotide也逐渐与鞘内阿片类药物联合使用,以利用潜在的协同效应治疗难治性慢性和癌症疼痛[80]。而在最新指南中,ziconotide已被鼓励作为一线药物治疗神经性和伤害性疼痛[81]。
-
2.3 Soblidotin(TZT-1027)
1970年Pettit研究小组从采自印度洋、太平洋等海域的软体动物Dolabella auricularia中分离得到18个抗肿瘤活性肽(dolastatin 1-18),其中dolastatin 10抗肿瘤活性最强。Soblidotin(TZT-1027,CAS 149606-27-9,见图3B)是用苯乙胺取代Doe单位的D-10全合成衍生物。在细胞分裂期,TZT-1027可通过化学键连接到微管蛋白上,干扰微管聚合及其稳定性,使细胞从G2期到M期的分化停滞,导致细胞凋亡。在I期临床实验中,Horti等[82]以49名患者为实验对象评估TZT-1027的MTD及其剂量限制毒性,结果表明,MTD及推荐用于II期临床研究的TZT-1027的最佳剂量均为4.8 mg/m2,每3~4周注射1次,TZT-1027的开发前景还需其他肿瘤治疗的临床实验数据才能确定。
-
2.4 Tasidotin,Synthadotin(ILX-651)
Dolastatin 15是1种分离于印度洋无壳软体动物截尾海兔Dolabella auricularia的含有特殊氨基酸的较短链状肽类化合物,具有抑制P388小鼠白血病细胞生长及抑制肿瘤细胞微管聚合的作用。Tasidotin(见图3C)是dolastatin 15的1种微管靶向衍生物,主要通过减少缩减速率(即从肿瘤细胞微管增长到缩减的转换频率)以及微管增长的时间发挥抗肿瘤作用[83],研究发现tasidotin在细胞内会进行水解,形成N,N-dimethylvalyl-valyl-N-methylvalyl-prolyl-proline(P5)。P5对于微管蛋白聚合物的抑制活性强于tasidotin,并且细胞毒性低于tasidotin[84]。
Tasidotin最早由雅培公司开发,但结构复杂、化学合成产率低及水溶性差等原因均阻碍对其药效的临床评价,一度被中止。2003年,Genzyme赛诺菲公司启动口服tasidotin盐酸盐治疗非小细胞肺癌(NCT00078455)、恶性黑色素瘤(NCT00068211)和非激素依赖性的前列腺癌(NCT00082134)的II期临床研究,目前均已完成。
-
2.5 Elisidepsin(PM02734)
Kahalalide F(KF)是从食草的海洋软体动物Elysia rufescens(见图4b)中提取分离的1种具有抗肿瘤活性、含环缩氨酸的肽类物质。与其他抗肿瘤药物作用机理不同,它可选择性改变肿瘤细胞的溶酶体膜,干扰溶酶体功能,通过非凋亡机制的死亡程序(oncosis)诱导细胞死亡,且并不阻滞细胞周期和降解DNA。由PharmaMar公司开发的抗肿瘤药物elisidepsin(见图4B)即为1种合成的KF类环缩酚肽,可引起典型的坏死性(而非凋亡性)细胞死亡,并导致肿瘤细胞形态学发生极大改变。Salazar等[85]对晚期实体瘤患者的I期临床试验表明,elisidepsin对于可预测的转氨酶可逆性增加具有很好的耐受性,并已观测到初步的抗肿瘤活性;其MTD为6.8 mg/m2,建议用于II期试验的最佳剂量为5.5 mg/m2。Goldwasser等[86]将elisidepsin与卡铂(carboplatin)或吉西他滨(gemcitabine)联合用药于I期临床试验得到推荐用于II期临床试验的最佳剂量为4 AUC/mg。
Elisidepsin于2016年2月16日完成II期试验,评估的剂量范围为0.1至1.6 mg/m2(30 min q3wk)和2.0~11.0 mg平剂量(FD)(3 h q3wk)。常见的不良事件为1/2级瘙痒,恶心,疲劳和过敏。值得注意的是,未观察到骨髓毒性。血浆最大浓度和总药物暴露量随剂量呈线性增加。在30 min q3wk组和结肠直肠腺癌(n=3)、食管腺癌、子宫内膜腺癌、胸膜间皮瘤和头颈部的胸膜间皮瘤预处理患者中观察到疾病稳定3 h[87-89]。
-
2.6 Cemadotin(LU 103793)
海兔毒素(dolastatins)是一系列分离于印度洋海兔Dolabella auricularia(见图3)的天然细胞毒性肽,通过抑制微管蛋白组装和微管蛋白的聚合而发挥作用并诱导细胞周期阻滞于G2/M期[90]。Cemadotin(见图3D,LU-103793)是dolastatins15的合成水溶性类似物,具有很强的抗增殖和临床前抗肿瘤活性,对多种肿瘤模型具有突出的活性。LU-103793已经在5个I期临床试验中进行了评估,一些结果表明cemadotin没有客观的抗肿瘤反应;可逆性剂量相关的中性粒细胞减少是主要的剂量限制毒性;Cemadotin 120 h连续静脉输注完全避免了其对心脏的毒性作用,心血管毒性似乎与母药或其代谢物的血液峰值水平的大小有关,而骨髓毒性则与血液浓度超过某一阈值的时间有关[90]。II期临床试验表明,LU 103793对转移性胸腺癌及非小细胞肺癌治疗率较低,且易产生严重的嗜中性白血球减少症、口腔炎、肌痛、无力、血清胆红素增多及细胞毒性等副作用,但它仍然是1种值得关注的药物。目前,其对乳腺癌、肺癌、卵巢癌、前列腺癌和结肠癌患者的治疗仍在进行II期临床试验,然而最近观察到了几种不良副作用,导致一些II期临床试验中止[91]。
-
2.7 Glembatumumab Vedotin(CDX-011)
CDX-011(见图3E1)是1种由人免疫球蛋白G2单克隆抗体与药物auristatin E(MMAE,分离于印度洋海兔Dolabella auricularia,见图3)共价连接而成。Glembatumumab vedotin与肿瘤细胞上的gpNMB结合并在溶酶体内化后通过缬氨酸-瓜氨酸接头的蛋白水解切割释放MMAE,导致细胞通过游离MMAE抑制微管而死亡[92]。临床Ⅰ、II期实验表明,CDX-011不仅对黑色素瘤有较好的疗效,对GPNMB抗体表达型晚期乳腺癌也用药安全且有较好的疗效,此种靶向治疗的进一步研究已被批准。这些试验表明,CDX-011有望成为接受MAPK抑制剂治疗或免疫检查点抑制剂后进展的黑色素瘤患者的有效疗法。CDX-011的相关毒性主要表现为皮疹和精神病。近期的II期临床试验NCT 02302339表明,CDX-011具有很好的活性(ORR的主要终点得到满足),在严重预治疗的黑素瘤患者中具有可控的安全性。使用varlilumab活化抗CD27单克隆抗体或PD-1抑制剂评估CDX-011的其他队列可以进一步了解ADC和免疫疗法的协同作用[92]。
-
2.8 ASG-5ME
ASG-5ME(见图3F)是1种靶向SLC44A4的ADC,包含1个IgG2 kappa抗体,通过1个缬氨酸-瓜氨酸的二肽接头与细胞毒素MMAE(分离于印度洋海兔Dolabella auricularia)连接,被用于胰腺癌患者,是1种有效的靶向性杀伤癌细胞的药物[93]。作为1种抗体-药物偶联剂,其中药效分子MMAE是合成dolastatin 10的类似物[94]。MMAE与dolastatin 10类似,都能抑制细胞分裂,但由于毒性较高而不能被直接用作药物,因此被做成了抗体-药物偶联剂ASG-5ME。靶标SLC44A4是人类胆碱转运体的类似物,在多种实体肿瘤中过表达,例如前列腺癌和胰腺癌。当ASG-5ME通过靶向SLC44A4连接到癌细胞上后,通过内吞作用进入细胞,酶催化导致连接体断裂使得MMAE被释放到细胞,最后药物连接到微管上引起细胞循环阻滞在G2/M期引起细胞凋亡[93,95]。ASG-5ME目前处于Ⅰ期临床研究阶段,主要评价其在晚期的胰腺癌患者中的应用,研究发现使用了单克隆抗体的ASG-5ME可对抗90%的胰腺癌患者中存在的靶标SLC44A4,从而选择性杀伤胰腺癌细胞[96]。
-
2.9 泊仁妥西凡多汀(Brentuximab Vedotin,SGN-35)
Brentuximab Vedotin(见图3E2)是1种由CD30抗体与高效抗微管剂单甲基auristatin E(MMAE)组成的抗体-药物耦合物。其中CD30为1种细胞表面糖蛋白,分子量为120 kDa,在包括霍杰金淋巴瘤(hodgkin lymphoma,HL)和系统性间变性大细胞淋巴癌(systemican aplastic large cell lymphoma,sALCL)等多种淋巴瘤中的表达均有增高;MMAE则是1种天然的微管蛋白抑制剂dolastatin 10的合成衍生物,dolastatin 10分离于印度洋无壳软体动物截尾海兔Dolabella auricularia[97-100]。
Brentuximab Vedotin(Adcetris)由日本武田(Takeda)制药公司及美国西雅图遗传学公司(Seattle Genetics)联合开发,于2011年8月19日被FDA批准上市用于治疗HL及ALCL,这也是自1977年以来第1个被FDA批准用于治疗HL和第1个专门适用于治疗sALCL的新药。2018年3月,FDA又进一步批准该药物用于先前未经治疗的III期或Ⅳ期霍奇金淋巴瘤(CHL)患者。现今,Brentuximab Vedotin在临床治疗中也常参与联合用药。据报道Brentuximab Vedotin联合bendamustine(BvB)治疗复发性HL具有良好效果[101];BV与cyclophosphamide、doxorubicin、prednisone联合治疗CD30阳性周围T细胞淋巴癌具有一定的疗效[102]。
-
2.10 Spisulosine(ES-285)
Spisulosine(见图4C)是1种分离自北大西洋软体动物蛤Spisula polynyma(见图4c)的新型海洋细胞毒素剂,属于类鞘氨醇化合物,由分别在位置2和位置3处带有氨基和羟基的线性18碳链组成,可由全合成法生产[103],盐酸盐是药物的首选形式[104-105]。
ES-285具有潜在的抗肿瘤活性,在实体瘤、淋巴瘤和白血病的多种人类细胞系中已被临床前证明,并且在实体瘤中的效力比在淋巴瘤和白血病中观察到的效力高10倍[103]。ES-285的抗肿瘤活性还可以通过改变细胞周期、信号转导和凋亡途径的基因表达[106-107],以及通过神经酰胺途径和PKC-ζ(蛋白激酶C-ζ)活化作用将其细胞内转化为神经酰胺样类似物来解释,目前正在进行I期临床研究[108-109]。
-
3 来源于棘皮动物门的海洋药物
棘皮动物门(Echinodermata)在无脊椎动物中进化地位较高。大多底栖,少数海参行浮游生活,从浅海到数千米的深海都有广泛分布,现存种类6 000多种。这类动物个体一般较大,数量也较多。从几种海参分离出的海参素和黏多糖具有抗癌活性,某些棘皮动物具有毒腺或毒液,是研究海洋药物重要的先导化合物文库之一。
络通,玉足海参多糖(Holothuria Leucospilota Polysaccharides,HL-P,见图5A),是从玉足海参Holothuria Leucospilota(见图5a)体壁中提取的1种硫酸岩藻糖化硫酸软骨素,主要含有岩藻糖、氨基半乳糖、葡萄糖醛酸,并含有30%左右的硫酸基,主链是不同类型的硫酸软骨素重复单元,分支为寡聚岩藻糖硫酸酯[110]。
HL-P具有减少脑缺血、改善软脑膜微循环、防治血小板聚集及血栓形成和明显的抗凝作用,可用于防治缺血性脑中风及血液栓塞性疾病。在FeCl3引起的大鼠脑缺血的模型上灌服HL-P能明显改善动物行为障碍,缩小脑梗死范围,降低脑水肿,增加脑部血流量,延长凝血时间。大鼠静脉注射HL-P能明显抑制血流停滞引起的深静脉血栓形成[111],目前仍处于III期临床研究。
-
4 来源于尾索动物门的海洋药物
尾索动物门是动物界最高等的一门,已知物种约7万多种,现发现种类有4万多种,分3个亚门即尾索、头索以及脊椎动物。尾索动物又称被囊动物(tunicate),全世界约有1 370多种。来自于尾索动物门的活性物质丰富,具有如抗肿瘤、抗病毒等活性,这些活性物质是新药开发的重要来源。目前来自海洋尾索动物门的活性物质4个,其中已成功上市2个,处于III期临床1个,折戟II期临床1个。
-
4.1 曲贝替定(Trabectedin,ET-743)
Trabectedin(ET-743,见图6A1)是1969年Sigel研究团队从采自加勒比海的海鞘Ecteinascidia turbinata(见图6a)中提取的的四氢异喹啉类生物碱衍生物。由于trabectedin结构复杂,直到1996年Corey等人才完成了曲贝替定的全合成。2000年PharmaMar公司的Cuevas团队报道了由cyanosafracin B合成trabectedin的半合成路线,简化了Corey的合成路线,为trabectedin的上市铺平道路[112]。
不同于其他结合DNA主沟的抗肿瘤药物,Trabectedin可与DNA小沟中的鸟嘌呤残基结合,形成蛋白质加合物;还可与包括转录因子在内的DNA结合蛋白相互作用,从而以启动子特异性和细胞特异性的方式控制基因表达,影响癌细胞的增殖、分化、凋亡以及细胞因子和趋化因子的产生[113]。此外,Trabectedin还可影响肿瘤微环境[114]并选择性影响肿瘤相关巨噬细胞的增长,阻止其产生肿瘤生长因子、趋化因子和细胞因子[115]。
Trabectedin于2007年经EMEA(European Medicines Agency)批准在欧洲首次上市;2015年顺利通过Ⅲ期临床后,美国FDA批准Trabectedin用于治疗脂肪肉瘤和平滑肌肉瘤[116],商品名为Yondelis。Trabectedin不仅对软组织肉瘤有较好的疗效,对于妇科恶性肿瘤也有很强的抗肿瘤活性。Trabectedin治疗复发性卵巢癌,除以单药治疗形式外,还能够与脂质体阿霉素进行联合治疗[117]。
-
4.2 Lurbinectedin(PM01183)
PM01183(Lurbinectedin,见图6A2,Cas 49781-47-3)是一类合成的四氢异喹啉生物碱,结构与来源于被囊动物红树海鞘(Ecteinascidia turbinata,见图6a)的ET-743相似[118-119],区别在于ET-743结构中的四氢异喹啉结构被替换为β-四氢咔啉。体外测试显示PM01183对多种肿瘤细胞有增殖抑制作用,其原理是通过泛素/蛋白酶机制,在DNA模板机器特异性降解过程中不可逆地终止延伸的RNA多聚酶Ⅱ(Pol Ⅱ)作用,从而导致后续DNA降解及凋亡。此外,PM01183还能够影响炎性微环境,对于肿瘤相关的巨噬细胞有选择性的诱导凋亡效应,并特异性地抑制炎性细胞因子的生成。研究表明,它与ecteinascidin类化合物一样可以共价结合于DNA小沟形成加合物,从而引发DNA双链的断裂,也可以从mRNA水平干扰正常蛋白质的合成,延迟DNA复制的S/G2期,最终导致细胞凋亡[120]。
2018年基于II期临床(NCT02454972)研究结果显示,该药治疗化疗后无进展小细胞肺癌(SCLC)患者,客观缓解率(ORR)可达39.3%,患者中位总生存期(OS)为11.8个月,2018年美国FDA授予PM01183孤儿药资格,但由于II期临床结果显示该药骨髓抑制风险较大,需要进一步提供更多的数据来指导PM01183的应用。目前,该药正在进行包括输卵管癌、非小细胞肺癌(NCT02566993)、腹膜癌等多个癌症的Ⅲ期临床试验,其中也包括铂类耐药的卵巢癌患者的III期(NCT02421588)治疗研究。
-
4.3 Plitidepsin(Aplidine)
Plitidepsin又称aplidine(见图6B,CAS 137219-37-5),是Rinehart等人从地中海海鞘Aplidium albican(见图6b)中分离得到的抗肿瘤活性天然产物,其与1984年进入I期临床研究的didemnin B(1种来自于膜海鞘的环肽类化合物)在分子结构上仅相差2个氢原子。两者的体外抗肿瘤活性比较相似,但aplidine的毒性更低且生物活性更高。Aplidine对RNA合成无明显抑制作用但可以抑制DNA合成,在10~100 nmol/L浓度下即可激活细胞凋亡受体CD295,引发细胞凋亡;同时aplidine也可以激活p388丝裂原活化蛋白激酶(MAPKs),有效抑制DNA复制和蛋白质合成,阻滞细胞周期中G1、G2期,特别的是其能抑制鸟氨酸脱羧酶(肿瘤形成和生长过程中的1种关键酶),抑制白血病细胞血管内皮生长因子(VEGF)的表达,具有广泛的抗肿瘤活性[121-123]。
Aplidin目前在II期临床主要用于实体瘤、血液疾病如T细胞淋巴瘤的治疗,且已被欧委会(European Commission)和美国FDA作为孤儿药用于多发性骨髓瘤的治疗,然而由于aplidine的疏水性,其临床使用受到限制,西班牙PharmaMar公司采用含有25 mg/mL的D-甘露醇作为膨胀剂的注射用水(WfI)与叔丁醇(体积比6∶4)溶解500 mg/mL aplidine溶液进行冻干,在4 ℃下避光储存(只能保证1年内稳定),其复溶液为15∶15∶70(体积比)cremaphor EL-乙醇-WfI[124],临床使用时,采用复溶液溶解冻干粉后,加入到100~1000 mL 0.9%氯化钠的输液袋或瓶中,缓慢手工摇动使其混匀,而后静脉内给予。其制剂显然存在如下问题:①aplidine的冻干粉制备使用叔丁醇,增加对冻干设备的要求,同时叔丁醇的残留也给样品复溶、临床使用带来风险;②复溶溶液含大量有机溶媒乙醇和cremaphor EL(聚氧乙烯蓖麻油),静脉注射具有溶血风险,且易发生神经毒性,轻者可出现头痛、震颤、失眠、梦魇、畏光、感觉迟钝等,重者可出现运动不能、缄默症、癫痫发作、脑病等,加重患者的痛苦;③最严重的是aplidine体内非特异性分布,在杀死癌细胞的同时,也对正常细胞及组织带来损伤,临床前研究显示aplidine具有剂量依赖性细胞毒活性,非特异性分布、有机溶媒、表面活性剂带来的毒副作用增加了其临床药用风险。
III期临床研究(NCT01102426)设计aplidine与地塞米松合用,治疗复发/难治性多发性骨髓瘤。但因为aplidine具有毒副作用,必须事先给糖皮质激素如地塞米松进行预防。令人欣慰的是,III期临床试验结果显示aplidine研究已达到其主要终点,2018年aplidine作为抗肿瘤药物在澳大利亚上市[125]。
-
4.4 Didemnin B(NSC-325319)
Didemnin B(见图6C)是1981年首次被Rinehart小组从加勒比海状菌Trididemnun solidum(见图6c)中分离出来的环状缩酚肽,是1种有效的蛋白质合成抑制剂[126-129],它可以抑制DNA蛋白质合成,并在较小程度上抑制RNA蛋白质的合成[130-131]。低剂量的didemnin B似乎诱导细胞保持在G1期,较高剂量的didemnin B抑制细胞周期的所有其他阶段,在体内,didemnin B已被证明对IP B16黑色素瘤、IP M5076肉瘤和IP给予P388白血病具有抗增殖和抗肿瘤活性[132]。在I期试验中,已显示其可通过降低T细胞亚群水平显示免疫抑制特性[132-133]。使用didemnin B的II期研究已经在许多肿瘤类型中进行,包括宫颈癌、肾癌、非霍奇金淋巴瘤和前列腺癌。然而,这些试验导致显著的神经肌肉毒性并且没有客观反应。虽然didemnin B在晚期预处理的非霍奇金淋巴瘤患者中显示出活性,但由于患者出现严重疲劳试验暂停。其他试验因显示该药过敏反应发生率高而终止,最终由于剂量限制毒性和水溶性差使得didemnin B的试验全被搁置[134-135]。
-
5 来源于节肢动物门的海洋药物
节肢动物门是动物界最大的一门,全世界约有120万现存种,占整个现动物种数的80%。其生活环境极其广泛,无论是海水、淡水、土壤、空中都有它们的踪迹,有些种类还寄生在其他动物的体内或体外。最受关注的药用节肢动物是软甲纲中十足目的种类,主要包括虾类、寄居蟹类和蟹类,以及肢口纲中的鲎类,它们已被广泛应用于制药工业中,现来自海洋节肢动物门的2个活性物质,均处于III期临床研究。
-
5.1 Bryostatin 1(NSC339555)
Bryostatin 1(苔藓虫素1,见图5B)是由Pettit研究小组从1种草苔虫Bugula neritina(见图5b)中分离得到的具有抗肿瘤活性的大环丙酯类化合物。Bryostatin 1可选择性地抑制人癌细胞,其主要机制是竞争性抑制佛波醇酯与蛋白激酶C(proteinkinase-C,PKC)结合,进一步调节细胞内信号转导途径以及作用于细胞核中的转录因子参与基因表达的调控,实现对肿瘤细胞的生长、分化、侵袭、转移、凋亡的调节,I期临床数据表明bryostatin 1对恶性黑色素瘤、淋巴瘤和卵巢癌显示了活性,剂量限制性毒性主要是肌肉痛、恶心和呕吐[136]。但遗憾的是临床II期研究表明,单独用药治疗恶性黑色素瘤、结肠癌、非霍奇金淋巴癌、复发性多态骨髓瘤和复发性上皮卵巢癌均不能产生抗癌应答,治疗肾癌能产生小部分的应答。其与紫杉醇联合用药的II期临床实验报告数据表明,29%患者产生部分抗癌应答,但53%的患者有肌痛反应[137],且bryostatin 1与紫杉醇的协同作用具有顺序依赖性,即紫杉醇的用药必须在bryostatin 1之前,且与紫杉醇联合用药对晚期胰腺癌并无疗效[138]。Bryostatin 1与顺铂联合用药可治疗上皮性卵巢癌,而bryostatin 1与顺铂联合治疗老年或复发性子宫颈癌、与IL-2联合治疗肾癌均不能产生好的抗癌应答,与顺铂联合治疗复发性卵巢癌的临床试验还在研究中[139]。
此外研究显示bryostatin 1可改善神经元连接并增强小鼠记忆力,其作用机理主要归因于通过结合其调节性C1域来调节新型和常规蛋白激酶C(PKC)。临床II期试验评价bryostatin 1在阿尔茨海默病患者治疗中的初步安全性、有效性,药物代谢动力学(pharmacokinetics,PK)和药物效应动力学(pharmacodynamics,PD)的研究已于2017年11月6日终止,临床号为NCT02221947。
-
5.2 几丁糖酯(sulfated carboxymethylchitosan)
几丁糖酯(sulfated carboxymethylchitosan,916)是由中国海洋大学医药学院研究开发的1种低分子量海洋硫酸多糖药物。是以海洋动物蟹类(见图5c)外壳中所含的甲壳质为基础原料,经过脱乙酰化、羧甲基化和硫酸酯化后制得的1种低分子类肝素化合物。化学名称为3-O-硫酸基-6-O-硫酸基/羧甲基-β-(1,4)-D-2-氨基-2-脱氧-葡聚糖钠盐[β-(1,4)-polyglycosamine-3-O- sulfate-6-O-sulfate-6′-O-carboxylmethyl ether sodium],分子式为(C6H9NO4R1R2)n,其中n=5~30,R1=SO3Na,H,R2= SO3Na,CH2COONa,化学结构式见图5C。几丁糖酯具有明显的调血脂、抗氧化及防止动物实验性动脉粥样硬化形成的作用,且毒副作用低,该药于2001年被国家药品监督管理局批准获得临床研究批件,目前已经完成了II期临床研究[140]。
-
6 来源于纽形动物门的海洋药物
纽形动物又称吻腔动物,简称纽虫或吻虫,主要生活在温带海洋中,分布于石头下、海藻丛中、泥沙中或珊瑚礁中,营底栖生活。特殊的生活环境与生存压力使得纽形动物大多可释放蛋白类毒素,以维持自身的正常生活与繁殖。这类蛋白毒素在新药开发领域中也显示出了良好的活性,遗憾的是目前来自海洋纽形动物门的活性物质仅1个,并折戟于II期临床。
DMXBA(GTS-21)即3-(2,4-二甲氧基苯亚甲氧基)-新烟碱二盐酸盐,代号名称为GTS-21(见图5D),是由美国佛罗里达大学和日本得岛Taiho药物公司的科学家由海洋纽形动物类(Nemertea)两孔纽虫(Am-phipoius,见图5d)分泌的毒素新烟碱anabaseine与2,4-二甲氧苯甲醛缩合而成的衍生物。于2003年开始的临床I期试验表明,该药物可明显提高健康青年男性以及精神分裂症患者的认知水平,2006年底该药进入临床II期试验[141]。
GTS-21的nAChRs因子抑制机理亦可以减少神经炎症的发生率[142],尤其对于周边血液单核细胞中的炎症性细胞因子(PBMCs)、单核细胞和TLR机动的全血独立性释放的抑制效果,GTS-21比烟碱具有更高效能[143]。GTS-21亦被认为具有治疗AD的潜力,对与AD有关的情感疾病也有积极的治疗作用。然而也有部分II期临床结果显示,GTS-21的使用易提高患者用药副作用的发生率[144]。临床前毒理学研究表明,DMXBA对心血管和胃肠道几乎没有作用[145]。临床I期试验评价了DMXBA的每日最大耐受剂量,没有出现明显的安全问题[146]。临床II期实验显示,与安慰剂相比,DMXBA能显著提高注意力、工作记忆力以及事件记忆3个认知功能的检测指标,其在治疗精神分裂症的患者时,能够改善病人的控制缺陷和注意力(尤其在低剂量时),对提高神经认知有一定的重要意义[147]。此外,GTS-21还可通过调节M1极化和肺泡巨噬细胞功能减少急性肺损伤的炎症反应,这种保护主要与抑制肺AM M1极化和AM功能的改变有关[148]。α7烟碱乙酰胆碱受体(nAChRs)通过阻断重要的促炎转录因子、B细胞的核因子κ轻链增强子(NFκB)的作用来减轻炎症。α7nAChR部分激动剂GTS-21在内毒素血症和败血症模型中减少促炎细胞因子[包括白细胞介素-6(IL6)和肿瘤坏死因子(TNF)]的分泌,其抗炎作用广泛归因于α7nAChR活化。然而,α7nAChR参与GTS-21对炎症通路影响的机制细节仍不清楚[149]。脾切除可部分抵消GTS-21的抗凋亡作用,也抑制了GTS-21对α7nAChR通路的激活,GTS-21可有效减轻LPS诱导的肾损伤;脾切除抑制GTS-21的抗炎和抗凋亡活性以及肾保护作用。另一方面,脾切除术减少了循环中炎性细胞因子的产生,并对肾脏有一定的保护作用[150]。GTS-21的免疫抑制作用可能是通过抑制DC分化介导[151]。LPS诱导的心肌病理和细胞凋亡的变化与空白组相比有显著性差异,GTS-21可以逆转这种变化。然而,用α-真菌毒素预处理明显阻断了GTS-21的保护作用[152]。α7nAChRs的选择性激活促进了小胶质Aβ的吞噬作用,并抑制了神经元γ-分泌酶的活性,从而有助于减轻脑Aβ负担和认知障碍。因此提出神经元和小胶质细胞α7nAChRs作为AD治疗的新的治疗靶点[153]。GTS-21通过抑制α7nAChR的Akt/NF-κB信号通路来抑制LPS诱导的炎症。GTS-21在炎性疾病治疗中具有潜在的应用[154]。GTS-21能减轻实验结肠炎鼠肠道炎症,该作用可能与减低趋化因子CXCL9/Mig水平、进而减少炎症细胞的肠道聚集有关[155]。
-
7 来源于藻类的海洋药物
海藻是海洋中主要的低等海洋生物,是海洋初级生产者的重要类群,同时也是海洋天然活性物质的主要来源之一。在海洋独特的生存环境中,为了对付海洋食草动物的大量吞食以维护自身的生存繁衍,海藻大多能产生一些独具特色的代谢物质,这些活性物质也是新药开发的重要来源。目前来自海洋藻类的活性物质7个,其中上市药5个,处于III期临床研究1个,处于I期临床1个。
-
7.1 藻酸双酯钠(Propylene glycol alginate sodium sulfate,PSS)
藻酸双酯钠(见图7A1)是1985年由中国海洋大学管华诗院士团队研制开发的中国第1个海洋药物,为海洋类肝素药物。是以褐藻酸为原料,经分子修饰而得到的1种海洋低分子硫酸多糖化合物,临床主要用于缺血性心、脑血管疾病和高脂血症的防治,其化学名称为褐藻酸丙二醇酯硫酸酯钠盐。目前经中国国家药品监督管理局批准上市剂型有片剂和注射剂[156-158]。
PSS通过改善血液流变学性质,抑制内源性凝血途径、血小板活化和聚集、血栓形成辅助因子,激活、促进纤维蛋白溶解、蛋白C系统等,发挥抗凝血活性[159-162]。同时研究者还发现PSS具有降血脂、降血糖、改善微循环等多种功能[163-166]。基于多样的药理活性,PSS目前被广泛用于与其他药物联合治疗多病理靶点疾病。目前,研究人员正着手对其进行二次开发,利用现代分离纯化技术,提高PSS纯度及质量,制订新的PSS质量标准,以加强PSS原料药、片剂和注射剂制备工艺中有关物质的控制和检测,提高其质量标准,充分发挥其疗效,增加新适应症,为广大患者提供更安全、更有效的海洋糖类药物。
-
7.2 甘露醇烟酸酯(Mannitol nicotinate)
甘露醇烟酸酯(Mannitol nicotinate,见图7B1),又称甘露六烟酯,化学名为(2R,3R,4R,5R)-六吡啶-3-羧酸己六醇酯,是以海带(见图7b)中提取的甘露醇为原料,通过与烟酰氯进行酯化反应得到。甘露醇烟酸酯最早于1985年由山东省卫生厅批准生产上市,商品名为甘露六烟酯片,用于降血脂。此外,研究显示甘露醇烟酸酯还可通过扩张血管起到预防和治疗高血压的作用,临床研究甘露醇烟酸酯治疗30例I期、II期高血压患者的降压效果及其对血清、电解质、血脂的影响,结果降舒张压效果非常明显,成为较好的抗舒张期高血压药物[167]。目前对甘露醇烟酸酯副作用的报道很少,临床上只有少量轻微恶心等胃肠道反应,患有严重胃溃疡的患者慎用,对孕妇及哺乳期妇女的影响尚未有明确报道。
-
7.3 岩藻聚糖硫酸酯(海昆肾喜胶囊)
海昆肾喜胶囊,是由中科院海洋研究所研制开发的国家海洋中药,其有效成分是从海带(Laminaria japonica,见图7b)中提取分离的岩藻糖聚糖硫酸酯(Fucoidan polysaccharide,FPS,见图7B2)。海带来源的FPS结构中除了主要含有α(1→3)-L-岩藻聚糖硫酸酯外,还有少量α(1→2)-L-岩藻聚糖硫酸酯及半乳糖和甘露糖等。目前由吉林省辉南长龙生化药业公司生产(批准文号Z20030052),临床上用于慢性肾功能衰竭及代偿期、失代偿期和尿毒症早期治疗[168-170]。
海昆肾喜胶囊临床用于对慢性肾功能不全代偿期和失代偿期患者的治疗,且无明显不良反应,患者对其依从性良好。2019年有学者对60只大鼠进行岩藻糖聚糖硫酸酯抗血栓试验,通过比较血栓干湿质量来计算血栓抑制率,发现岩藻糖聚糖硫酸酯有明显的抑制血栓形成作用[169]。研究发现,FPS可减轻缺血再灌注大鼠心肌损伤和氧化应激[170-171]。FPS在抗凝血与促凝血、抗炎、抗肿瘤、免疫调节、抗菌、抗氧化、抗病毒等方面都有药理学活性[172]。但在新药研发方面,还应该充分考虑岩藻聚糖硫酸酯的药源问题。相信随着技术手段的不断进步和学者们的不断探索,将会极大促进岩藻聚糖硫酸酯的药用开发。
-
7.4 角叉菜糖鼻喷雾剂Carragelose
角叉菜糖鼻喷雾剂Carragelose是德国Marinomed公司研发的创新型抗病毒鼻腔喷剂,其主成份来源于红藻科可食用海藻(见图7c)的提取物卡拉胶(carrageenans,见图7C),又称为麒麟菜胶、石花菜胶、鹿角菜胶、角叉菜胶,主要是iota-型卡拉胶(iota-carrageenan),它的化学结构是由半乳糖及3,6-內醚半乳糖所组成的硫酸多糖[173-174],具有较低的毒副作用,该药可抑制病毒附着和进入细胞、减少病毒的复制、缓解病毒引起的症状[174],也可用于治疗成人、1岁以上儿童、妊娠及哺乳期女性的普通感冒。目前作为非处方药在欧盟、亚洲部分地区和澳大利亚上市,具有广谱的抗病毒性,目前被多个专利保护[175]。
Carragelose除了用于抗病毒鼻喷剂外,目前Nicox S.A公司获得Carragelose滴眼剂用于病毒性结膜炎的治疗授权。结膜炎是1种眼部炎症,可由病毒、细菌或过敏原引起,腺病毒占所有病毒性结膜炎的90%[176]。Carragelose在临床前研究中表现出抗病毒活性,其中包括3种最重要的腺病毒引起的结膜炎[177]。Nicox计划使用Carragelose抗病毒滴眼液进行临床研究,它将是1种治疗病毒性结膜炎的创新方法[178]。
-
7.5 甘露寡糖二酸胶囊(GV-971)
甘露寡糖二酸胶囊(GV-971,见图7D)是由中国海洋大学、中国科学院上海药物研究所和上海绿谷制药公司联合开发,于2019年11月被中国国家药品监督管理局批准上市,用于AD治疗的药物,是从海带褐藻胶(见图7d)中制备的甘露糖醛酸寡糖衍生物,不同于传统靶向抗体药物,GV-971能够多位点、多片段、多状态地捕获β淀粉样蛋白(Aβ),抑制Aβ纤丝形成,使已形成的纤丝解聚为无毒单体。最新研究发现,GV-971还通过调节肠道菌群失衡、重塑机体免疫稳态进而降低脑内神经炎症,阻止AD病程进展[179]。
AD是新药研发的“禁忌区”,临床失败率高达99.6%,过去20年来在该领域的研究几乎全军覆没,包括罗氏、礼来、阿斯利康、强生、辉瑞等以及百健和卫材合作的aducanumab均未能挺过III期。GV-971 II期临床研究能明显改善轻中度AD患者认知功能障碍,III期临床(NCT02293915)研究结果显示,GV-971能明显改善AD患者认知功能障碍,与安慰剂组相比,ADAS-cog12量表平均改善值为2.54,具有极其显著的统计学意义(P<0.000 1)。在疾病严重程度偏重的亚组中(MMSE量表评分在11-14)疗效尤为显着,与安慰剂组相比,ADAS-cog12量表平均改善值为4.55。GV-971对次要疗效指标CIBIC-plus具有明显改善趋势(P=0.059);GV-971组和安慰剂组相比,其不良事件或严重不良事件的发生率无显著统计学差异,安全性好,耐受性强[180-181]。GV-971于2019年11月在中国通过新药上市审批,成为全球首个多靶性抗阿尔茨海默病创新药物[182]。
-
7.6 螺旋藻糖肽
螺旋藻糖肽(K-001)是由螺旋藻(见图7e)提取分离获得的1种含有肽的杂多糖,它具有清热解毒、宣肺透表、预防治疗病毒性感冒、病毒性肺炎、非典型性肺炎的功能。现有治疗流行性感冒的藻糖蛋白胶囊,正处于临床II期试验,登记号为CTR20160745。螺旋藻糖肽为单一纯度,其分子量为130 kD,分析其糖链占糖肽总质量分数的69%,多糖含有α-糖苷键[183]。生物提取螺旋藻糖肽的专利方法为选取真菌中的纤维素酶,在常温条件下将其放入水中,制成水溶液,将上述水溶液与螺旋藻按0.5∶100的体积比加入盛有螺旋藻的容器中搅拌均匀后,避光静置2 h,取出上清液,采用常规方法得螺旋藻糖肽。螺旋藻糖肽单糖组成分析表明其含7种单糖,分别是岩藻糖、未知糖、鼠李糖、氨基葡萄糖、半乳糖、葡萄糖和甘露糖[184-185]。
-
7.7 D-聚甘酯
D-聚甘酯(D-Polymannuronate sulfate,DPS,见图7A2)是褐藻酸经降解、分级、纯化、化学修饰而制得的1种低分子量的硫酸多糖类化合物,化学名为聚甘露糖醛酸-6-丙二酯-2,3-硫酸酯钠盐。是由中国海洋大学医药学院研制的国家Ⅰ类海洋候选药物(专利号ZL93100608.2),主要用于治疗缺血性急性脑梗塞,有片剂和注射剂2种剂型。目前,已完成了该药的II期临床研究(批件号:2000XL-0195)。
D-聚甘酯能明显缩小脑栓塞24 h的梗塞范围,减少脑含水量,改善行为障碍,使脑组织缺血病变减轻,对大鼠局灶性脑缺血和全脑缺血均有明显治疗作用。进一步研究发现,其作用机制与抑制神经细胞内Ca2+的增加及脑缺血再灌注后脑组织中TXB2(血栓素B2)及6- keto-PGF1α(6-酮-前列腺素F1α)的产生、增加PGI2/TXA2(前列环素/血栓素A2)的比例和降低脑缺血再灌注所致的细胞间粘附分子ICAM-1 mRNA表达的增加有关。D-聚甘酯静脉注射和口服均可抑制胶原和花生四烯酸诱导的大鼠血小板聚集,抑制血小板粘附,延长出血时间;对动脉血栓和静脉血栓的形成均有明显抑制作用;并能延迟激光致小鼠肠系膜微血栓出现时间及降低花生四烯酸致小鼠肺栓塞的死亡率。
D-聚甘酯静脉注射和口服对大鼠静脉血栓及家兔体外血栓的形成均有明显抑制作用,并可延长家兔血浆TT(凝血酶时间)、CT、APTT(活化的部分凝血活酶时间)、RT、PT(血浆凝血酶原时间),显著降低大鼠血浆纤维蛋白原含量及Ⅱ、Ⅱa活性。DPS对小鼠一般生殖毒性、致畸胎试验和围产期三段生殖毒性的试验结果发现,口服DPS小鼠受孕能力、仔代的发育、胚胎毒、致畸胎性和对仔代出生后生长发育均无不良影响。
临床研究中,通过连续多次静脉滴注DPS注射液耐受性试验表明该药比较安全,单次口服DPS片最大剂量500~800 mg仍比较安全。受试者连续静脉滴注后血药浓度-时间曲线符合二房室模型,剂量在400~600 mg范围内,其人体内过程大致符合线性动力学特征,首次给药与第7日末次给药主要药代动力学参数均无显著性差异,体内无蓄积。DPS临床不良反应表现在轻度一过性天冬氨酸转氨酶(AST)、丙氨酸转氨酶(ALT)升高,肌酸磷酸肌酶增高和齿龈出血等,停药后1周内均可自行恢复[186]。
-
8 来源于海洋微生物的海洋药物
海洋真菌常以寄生、共生或腐生的方式在海洋环境中生长,是抗生素及其他生物活性物质的产生菌。为适应海洋生态系统的特殊性(高压,高盐,缺氧、光,温差较小等),海洋真菌形成了其独特的代谢途径和遗传背景,尤其海洋真菌复杂的次生代谢产物、独特的结构及特异、高效的活性,往往不同于陆地真菌的活性代谢产物。由于其资源优势和代谢产物的新颖性,海洋真菌已成为研究热点,从中分离到的活性物质目前有4个,成功上市2个,处于III期临床研究2个。
-
8.1 利福平(Rifampicin,RFP)
利福平(Rifampicin,RFP,见图8A)是由利福霉素B衍生得到的1种半合成抗生素。1957年Sensi等人从地中海链霉菌Streptomyces mediterranoi(见图8a)中分离得到A、B、C、D、E等利福霉素类化合物。其中利福霉素B活性较强,性质较稳定,但临床药效不够理想。以利福霉素B为先导,得到一系列药效更强的半合成利福霉素类抗生素。其中利福平对结核杆菌、麻风杆菌、链球菌、肺炎球菌特别是耐药性金黄色葡萄球菌等革兰氏阳性细菌及某些革兰氏阴性菌均有效。利福平于1965年批准上市,用于肺结核(TB)的治疗,其不良反应主要是引起肝损害,还伴有食欲减退、恶心、呕吐、腹胀、腹泻等消化道反应和皮肤潮红、皮疹、痰痒、哮喘等过敏反应,偶有白细胞减少、凝血酶原时间缩短、头痛等症状[187-188]。
-
8.2 头孢菌素C
头孢菌素(cephalosporins)最早是由意大利科学家Giuseppe Brotzu从萨丁岛海岸阴沟出口处的顶头孢霉菌(cephalosporium acremonium)中分离得到,他发现这些物质可以有效抵抗伤寒杆菌;1956年,Newton和Abraham成功地从顶头孢霉菌的培养液中分离出头孢菌素C,并于1961年确定了头孢菌素C的结构(见图8B)。7-氨基头孢烯酸(7-amino cephalosporanic acid,7-ACA)属于β-内酰胺类抗生素,是从顶头孢霉菌(Cephalosporium acremonium,见图8b)中分离得到的头孢菌素C(cephalothin C)中衍生出来的。以7-ACA为先导化合物进行结构优化得到的头孢噻吩是第1个用于临床治疗的头孢菌素类抗生素,它由礼来公司于1964年上市销售。
头孢菌素类抗生素作用机制与青霉素一样,通过抑制D-丙氨酰-D-丙氨酸转肽酶来抑制细菌细胞壁中黏肽的合成,阻碍细菌细胞壁的形成,使细胞不能定型和承受细胞内的高渗透压,从而引起溶菌,导致细菌死亡[189-190]。在临床上应用非常广泛,主要用于呼吸道感染、中耳炎、鼻窦炎、扁桃体炎、咽炎、急慢性支气管炎、泌尿道感染、皮肤及软组织感染、创伤感染、骨及关节感染、胃肠、胆道及腹部感染、生殖系统感染等,还可以用于防止术前、术中感染及术后引起的感染[191-192]。
-
8.3 普纳布林(Plinabulin,NPI-2358)
Plinabulin(见图8C,CAS 714272-27-2)为分离于海洋曲霉菌Aspergillus sp.(见图8c)的低分子环二肽phenylahistin的合成衍生物,是1种二酮哌嗪类微管蛋白抑制剂。Plinabulin可选择性作用于内皮微管蛋白中秋水仙碱结合位点,抑制微管蛋白聚合,阻断微管装配,从而破坏内皮细胞骨架,抑制肿瘤血流,且其不会伤害正常的血管系统。研究显示,在缺乏GEF-H1的情况下,抗肿瘤免疫受到阻碍,而普纳布林可释放免疫防御蛋白GEF-H1,GEF-H1是使树突细胞成熟、抗原交替呈递表达和CD8 T细胞有效启动的关键信号蛋白,普纳布林是使树突细胞成熟最有效的微管蛋白靶向制剂之一[193-194]。
在I期临床(NCT00630110)试验中发现,Plinabulin与docetaxel联合用药可明显提高plinabulin的生物利用度且二者互相不产生干扰作用,预防多西紫杉醇(docetaxel)化疗诱导中性粒细胞减少症的全球Ⅱ/Ⅲ期临床试验(NCT03102606)研究共募集了55例晚期或转移性非小细胞肺癌(NSCLC)患者[195],其中II期临床试验部分证明,plinabulin(20 mg/m2)与Neulasta(1种“升白”药物,用于提升患者体内的白细胞数量)相比,对严重中性粒细胞减少症的持续时间(DSN)非常相似,4级中性粒细胞减少的发生率几乎相同(15%比14%)。此外,II期临床确定推荐III期试验剂量(RP3D)的主要目标也已经实现,研究将在多西紫杉醇使用30 min后,单剂量使用20 mg/m2 plinabulin。2015年,BeyondSpring Pharmaceuticals公司启动了plinabulin与多西他赛联用用于非小细胞肺癌的III期临床研究(NCT02504489),其结果令人期待。此外,Bertelsen等[196]研究发现,plinabulin和X-射线放射治疗肿瘤细胞具有协同作用。尽管plinabulin表现出潜在的抗肿瘤活性,但因其溶解性低,临床上所用制剂组成含有40%的HS-15(聚乙二醇-15羟基硬脂酸酯)和60%的丙二醇,表面活性剂与有机溶媒长久使用会给患者带来安全性问题。
-
8.4 Marizomib(Salinosporamide A,NPI-0052)
Marizomib(NPI-0052,salinosporamide A,见图8D)是从海洋放线菌素Salinispora tropica(见图8d)中得到的具有γ-内酰胺-酰胺内酯结构的化合物。NPI-0052作为1个海洋天然产物,对多发性骨髓瘤(MM)、复发性及难治性骨髓瘤(relapsed/refractory MM)及其他多种实体瘤均具有较强的抑制活性[197-199]。目前,已被FDA和EMA分别于2013年和2014年批准作为孤儿药用于治疗多发性骨髓瘤。
NPI-0052具有强大的蛋白酶体抑制作用,能够不可逆地抑制鼠20S蛋白酶体,而对其他蛋白酶(如糜蛋白酶、胰蛋白酶、组织蛋白酶A和B)的抑制活性比蛋白激酶至少差1 000倍[198]。NPI-0052可以使常规治疗和对硼替佐米(临床上用作顽固性或易复发的多发性骨髓瘤的治疗药物)产生抗药性的多发性骨髓瘤细胞凋亡[200]。NPI-0052的联合用药试验表明低剂量NPI-0052与硼替佐米具有协同细胞毒性的作用。多个研究中心研究证实该药单药治疗多发性骨髓癌具有较好的效果,不良反应小,尤其是患者外周神经病变的发生率较低,易于耐受,安全性高,临床可长期使用[201]。NPI-0052在临床I期研究中,主要针对多发性淋巴瘤和实体瘤进行了单独用药以及联合伏立诺他的联合用药的评价。除此之外,NPI-0052用于复发性或难治性多发性骨髓瘤的临床I期研究以及与泊马度胺(pomalidomide)、地塞米松(dexamethasone)的联合用药的I期研究仍在进行中[202]。2017年,基于marizomib单独或与贝伐单抗联合使用(NCT02330562)的I/II期试验结果,由欧洲癌症研究与治疗组织(European Organisation for Research and Treatment of Cancer -EORTC)与Celgle、加拿大癌症治疗组织(Canadian Cancer Trials Group)联合启动了NPI-0052针对新诊断胶质母细胞瘤的III期临床研究(NCT03345095),以考察其对总体生存期的影响。
-
9 来源于脊椎动物(鱼类)的海洋药物
从两极到赤道海域,从海岸到大洋,从表层到万米左右的深渊,都有海洋鱼类的分布。生活环境的多样性,促成了海洋鱼类的多样性。为了应对苛刻的生存环境,很多特殊的化合物应景而生。这些结构新颖、功能奇特的化合物,成为了新药筛选的重要来源。目前来自海洋鱼类的活性物质6个,其中已上市成药3个,处于III期临床研究2个,II期临床1个。
-
9.1 拉伐佐(Lovaza)
葛兰素史克公司研发的鱼油脂类调节剂拉伐佐Lovaza(见图9A1)于2004年被FDA批准为唯一用于降低成年患者的甘油三酯水平的饮食辅助药物。该药是以鱼油中ω-3-脂肪酸为原料,进行乙酯化后得到的,它除了含47%二十碳五烯酸乙酯(EPA)和38%二十二碳六烯酸乙酯(DHA)外,还含有少量其他脂肪酸乙酯[203],其中EPA和DHA主要来源于海藻和海鱼(见图9a),具有降血脂功效。EPA和DHA在肝脏中可通过抑制酰基辅酶A(1,2-二酰基甘油酰基转移酶)降低TG合成并增加peroxismalβ-氧化,从而向上调节脂肪酸的代谢;可利用对TG合成酶的高亲和性抑制酯化和其他脂肪酸的释放;此外脂蛋白脂酶活性的增加可增强TG的消除速率[204]。
Lovaza临床数据显示,仅有3%左右的患者服用后表现出打嗝、消化不良和味觉异常等不良症状。由于其主要成分来自于鱼油制品,对鱼类有过敏史的患者需慎用。Glueck等[205]研究发现,逐月将Lovaza浓度从4 g/d递增至8 g/d、12 g/d比持续使用4 g/d治疗方案更能安全有效降低甘油三酯。然而目前有实验证明,Lovaza会极大程度提高肺癌发生率并增加出血因子及血尿素氮,对延长生命时长并无明显效果[206]。
-
9.2 伐赛帕(AMR101)
伐赛帕(Vascepa或Epadel、EPAX,见图9A2)是由阿玛林(Amarin)公司开发,主要用作治疗高甘油三酯血症的一类药物。AMR101与ω-3-脂肪酸乙酯来源相同,为在1 g胶囊中由不低于96% EPA组成的超纯ω-3多不饱和脂肪酸(PUFA)处方药[207]。最新研究表明,以大目金枪鱼副产物为原料,通过响应面优化酶辅助提取粗鱼油,采用一系列精制加工技术可制备纯化出EPA和DHA含量80%以上的鱼油,获得的EPA纯度高达96%以上,达到了美国FDA注册认证药物的含量要求(≥96%)[208]。临床研究显示患者对AMR101有良好耐受性,2 g/d时即可在不升高低密度脂蛋白胆固醇(LDL-C)水平的情况下有效降低甘油三脂水平[209];4 g/d可显著降低LDL-C、非高密度脂蛋白胆固醇、载脂蛋白B、总胆固醇、极低密度脂蛋白胆固醇、脂蛋白相关磷脂酶A2和高敏C-他汀类药物治疗的患者体内残留TG升高反应蛋白[210]。2012年7月26日,爱尔兰Amarin公司宣布FDA已批准Vascepa胶囊作为成人重度高甘油三酯血症患者饮食疗法的辅助治疗药物,可用于降低TG水平[211]。
2019年12月,Vascepa作为最大耐受剂量他汀类药物的辅助疗法,用于甘油三酯(TG)水平升高、存在心血管疾病或糖尿病、有2个或更多心血管疾病危险因素的成人患者,降低心肌梗塞、中风、冠状动脉血运重建、需要住院治疗的不稳定性心绞痛的风险。
-
9.3 Epanova
美国FDA于2014年5月5日正式批准阿斯利康公司的Epanova(见图9A3)作为高甘油三酯血症治疗药物上市[212],用于与饮食配合治疗严重的成人高甘油三酯血症。Epanova与拉伐佐和伐赛帕同属ω-3-脂肪酸类药物,但Epanova的主要成分为EPA和DHA,以游离羧基的形式存在。与前2种药物相比,Epanova拥有更好的生物利用度,更容易在肠道内被吸收利用(FDA 2014)。且Epanova是第1个被FDA批准的ω-3-脂肪酸类处方药。其有2个剂量选择:每日2 g(2粒胶囊)或4 g(4粒胶囊)。它是通过对鱼油进行衍生、纯化来制备的,主要成分为EPA和DHA,其中EPA占50%~60%,DHA占15%~20%,另外还含有少量其他脂肪酸。
FDA的批准是基于Epanova降低高甘油三酯的III期临床研究的阳性结果。目前该组织正在继续对Epanova进行大规模的心血管作用评估,尤其是对他汀类药物(Statin)与Epanova联合用药治疗进行评估[213]。
-
9.4 Neovastat(AE-941)
AE-941(见图9B)是1种以鲨鱼软骨为原料提取的液态口服用(舌下含)抗血管生成复合生物制剂,由加拿大亚特那实验公司研制。AE-941通过竞争抑制血管内皮细胞生长因子(VEGF)和抑制能分解肿瘤周围组织基质金属蛋白酶MMPs,从而抑制肿瘤组织周围的血管增生,切断肿瘤的血液供养,导致癌细胞凋亡[214]。此外,AE-941含有激活血管内皮细胞半胱天冬氨酸酶的凋亡因子,诱导内皮细胞凋亡,抑制新生血管的形成。I/II期临床试验中显示其对肺癌(特别是非小细胞肺癌)、肾癌、多发性骨髓瘤、前列腺癌、转移性癌等都具有疗效。
随机化的III期临床试验(NCT00005838)显示,在无法通过手术切除的III期非小细胞肺癌患者中的疗效对比中,放化疗联合AE-941组与放化疗联合安慰剂组总生存率无统计学意义。中位生存期为15.6个月,95%置信区间为13.8至18.1个月(P=0.73)。两组之间在常见的3级或更高的化学放疗引起的毒性没有观察到差异,因此放化疗中加入AE-941无法改善不能切除的III期NSCLC患者的总体生存期,研究结果不支持使用鲨鱼软骨衍生产品作为肺癌的治疗方法[215]。截止目前Neovastat能否有效治疗癌症并未在临床试验得到确证,还没有通过FDA的批准,仅作为补品进行销售。
-
9.5 替曲朵辛(Tetrodotoxin)
Tetrodotoxin(TTX,见图9C)是从河豚(puffer fish,见图9c)中提取的1种剧毒的生物碱类天然神经毒素,又称河豚毒素。1909年,日本科学家田原良纯(Yoshizumi Tahara)博士发现并首次分离得到TTX;1955年,平田义正(Hirata Yoshimasa)从河豚鱼中成功将河豚毒素分离出来,并于1972年成功合成人工河豚毒素[216]。
TTX是1种电压门控钠通道(VGSCs)的选择性阻滞剂,能够选择性与肌肉、神经细胞的细胞膜表面的钠离子通道受体进行结合,使电压依赖性钠离子通道被阻断,进而使动物的神经兴奋与传导、中枢神经系统的调控功能以及心脏搏动、平滑肌蠕动、骨骼肌收缩、激素分泌等一系列的生理功能受到影响,导致肌肉和神经麻痹[217]。与常用的麻醉药相比,TTX的麻醉效力强万倍以上,且持续时间长,能够完全阻断吗啡戒断后阿片类药物钠洛酮催促的戒断症状[218-219]。
如今,tetrodotoxin主要由CK Life Sciences及Wex Pharmaceuticals公司开发,主要研究方向为与癌症相关的疼痛。此外,TTX还具有治疗神经性疼痛、糖尿病性神经病、肝炎后神经病和手术后神经病的能力。Wex还在开发基于TTX的产品来治疗阿片类药物戒断并作为局部麻醉药使用。多项研究已进入III期临床阶段。一项加拿大随机、双盲的III期临床试验(TEC-006),对165名患有中度至重度癌症控制性疼痛的患者进行了Tectin 30μg bid x 4 d的治疗,以评估其减轻疼痛和改善生活质量的效果,现该工作已经完成(NCT00725114)。2018年3月,加拿大卫生部批准了一项针对患有化疗引起的神经性疼痛的患者的III期试验[194]。在进行第3阶段试验准备工作的同时,FDA和SPA正在讨论批准化疗引起的神经性疼痛的III期试验[193]。
-
9.6 Squalamine Lactate(MSI-1256F)
角鲨胺squalamine是从角鲨鱼Squalus acanthias(见图9d)的肝脏中分离出的几种氨基甾醇组合物。这种氨基甾醇是角鲨胺[33-(N-3-氨基丙基-1,4-丁二胺)-7C,24R-二羟基-5C-胆甾烷-24-硫酸盐,见图9D][220-222]。角鲨胺作为抗血管生成剂可用于治疗眼中的新血管形成和治疗癌症。先前已报道角鲨胺能够抑制内皮细胞的增殖,因此发现,它可作为血管生成抑制剂用于治疗与新生血管生长有关的疾病,如实体肿瘤生长和转移、动脉粥样硬化、年龄相关性黄斑变性、糖尿病视网膜病变、新生儿青光眼、视网膜缺血、动物中的黄斑水肿、炎性疾病等[223-230]。其可与其他细胞毒性剂如紫杉醇或卡铂一起使用,squalamine通过限制营养供应来抑制肿瘤组织的生长,而细胞毒性药物制剂则杀死肿瘤细胞实现抗癌作用。现正进行squalamine加铂类抗肿瘤药物治疗非小细胞肺癌、卵巢癌等的II期临床试验。此外,Hraiech等以6 d为周期,并于每周期取2 d全天对患者使用squalamine气雾剂。研究发现,在慢性P. aeruginosa肺炎模型中,squalamine对肺部的细菌总数及肺损伤降低程度比黏菌素作用更加显著[231]。
-
10 展望
浩瀚的海洋孕育千姿百态的生物,提供了形形色色的次生代谢产物,多样性的结构、丰富的生物活性使其成为新药研发中先导化合物的重要来源。同时现有海洋创新药物研究过程表明需要更加关注海洋生物药品的开发,探索其独特的栖息地(例如深海环境),以及海洋微生物的分离和培养,为发现具有治疗潜力的创新药物提供上述2个关键要素。
在国家牵头组织科研院所与大型制药公司结合推动海洋药物的开发方面,美国国家研究委员会取得了巨大成功,该委员会系统组织实施了针对迫切需要新疗法的疾病的海洋药物开发计划,如针对癌症、结核病等传染病的严重威胁,以及对多种药物具有耐药性的病原体开发新的有效药物。此外,应优化海洋、医药科研人员的专业知识结构,鼓励对海洋和生物医药科研人员的培养,促进医药学和海洋科学之间建立牢固的联系,培养更多专业技术人才聚焦海洋药物的研究。随着各种先进的海洋生物样品采集技术、基因工程技术、微生物培养发酵技术与微量活性化合物发现与合成技术的突破,海洋药物定会创造新辉煌,为人类重大疾病的防治做出新的、更大的贡献。
-
参 考 文 献
- 1
王长云,邵长伦.海洋药物学[M].北京:中国科学出版社,2011.
- 2
于广利,谭仁祥.海洋天然产物与药物开发[M].北京:中国科学出版社,2016.
- 3
于广利,赵峡.糖药物学[M].青岛:中国海洋大学出版社,2012.
- 4
KHALIFA S A M, ELIAS N, FARAG M A, et al. Marine natural products: A source of novel anticancer drugs[J]. Mar Drugs, 2019,17(9):491.
- 5
SHINDE P, BANERJEE P, MANDHARE A. Marine natural products as source of new drugs: A patent review (2015-2018)[J]. Expert Opin Ther Pat,2019,29(4):283-309.
- 6
CARROLL A R, COPP B R, DAVIS R A, et al. Marine natural products[J]. Nat Prod Rep, 2019, 36(12/13):122-173.
- 7
JIMENEZ C. Marine Natural Products in Medicinal Chemistry[J]. ACS Med Chem Lett, 2018, 9(10):959-961.
- 8
BLUNT J W ,CARROLL A R , COPP B R , et al. Marine natural products[J]. Nat Prod Rep, 2018, 35(1):8-53.
- 9
ZHANG G , LI J , ZHU T , et al. Advanced tools in marine natural drug discovery[J]. Curr Opin Biotechnol, 2016(42):13-23.
- 10
YAMADA Y. Studies on discovery and synthesis of bioactive marine organic molecules[J]. Yakugaku Zasshi, 2002, 122 (10):727-743.
- 11
XIAO G Z, SHAO X F, ZHU D P, et al. Chemical synthesis of marine saponins[J]. Nat Pro Rep,2019(36):769-787.
- 12
HE W M, ZHANG Z G, MA D W. A scalable total synthesis of the antitumor agents Et-743 and lurbinectedin[J]. Angew Chem, 2019,58(12):3972-3975.
- 13
徐雪莲, 王成. 海洋小分子药物临床研究进展[J]. 中国海洋药物, 2015,34(1):73-89.
- 14
刘莅.习近平总书记点赞管华诗院士打造中国“蓝色药库”梦[EB/OL].[2019-06-22].http://news.univs.cn/xytt/2018/0614/1178294.shtml.
- 15
SAKURAI M, MORI T, KARIGANE D,et al.Unfavorable outcome of chronic myelogenous leukemia in adolescent and young adults treated with tyrosine kinase inhibitors[J]. Int J Hematol,2015,102(3):342-348.
- 16
GILES F J . New drugs in acute myeloid leukemia[J]. Curr Oncol Rep, 2002, 4(5):369-374.
- 17
DOMBRET H, GARDIN C . An update of current treatments for adult acute myeloid leukemia.[J]. Blood, 2016, 127(1):53-61.
- 18
庞艳彬, 任杰, 范丽霞, 等. 重新认识阿糖胞苷在急性髓系白血病治疗中的作用[J]. 临床荟萃, 2017,32(3):268-271,276.
- 19
VIRA-A[EB/OL].https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=050486.
- 20
欧美贤, 卢金淼, 李水军. 阿糖胞苷与阿糖腺苷之误[J]. 上海医药, 2013(17):57-59.
- 21
SUITA K, FUJITA T, CAI W, et al. Vidarabine, an anti-herpesvirus agent, prevents catecholamine-induced arrhythmias without adverse effect on heart function in mice[J]. Pflugers Arch, 2018 ,470(6):923-935.
- 22
SEIFERT R. Does vidarabine mediate cardioprotection via inhibition of AC5?[J]. J Pharmacol Exp Ther,2016,358(2):242-243.
- 23
药品不良反应检测中心.警惕注射用单磷酸阿糖腺苷严重不良反应及超适应证用药风险[J]. 中国药物警戒, 2016, 13(6):381-381.
- 24
杨青. 抗转移性乳腺癌新药甲磺酸艾日布林[J]. 中国新药杂志,2012(01):10-12,32.
- 25
JORDAN A M. The primary antimitotic mechanism of action of the synthetic halichondrin e7389 is suppression of microtubule growth[J]. Mol Cancer Ther,2005,4(7):1086-1095.
- 26
YOSHIDA T, OZAWA Y, KIMURA T, et al. Eribulin mesilate suppresses experimental metastasis of breast cancer cells by reversing phenotype from epithelial mesenchymal transition (emt) to mesenchymal epithelial transition (met) states[J]. Br J Cancer,2014,110(6):1497-1505.
- 27
IN G K, HU J S, TSENG W W. Treatment of advanced, metastatic soft tissue sarcoma: Latest evidence and clinical considerations[J]. Ther Adv Med Oncol,2017,9(8):533-550.
- 28
DI COSIMO S, LA VERDE N, MORETTI A, et al. Neoadjuvant eribulin mesylate following anthracycline and taxane in triple negative breast cancer: Results from the HOPE studyl[J]. PLoS One, 2019,14(8):e0220644.
- 29
ARANGO N P, YUCA E, ZHAO M, et al. Selinexor (kpt-330) demonstrates anti-tumor efficacy in preclinical models of triple-negative breast cancer[J]. Breast Cancer Res, 2017,19(1):93.
- 30
INOUE K, NINOMIYA J, SAITO T, et al. Correction to: Eribulin, trastuzumab, and pertuzumab as first-line therapy for patients with her2-positive metastatic breast cancer: A phase ii, multicenter, collaborative, open-label, single-arm clinical trial[J]. Invest New Drugs, 2019,37(3):592-593.
- 31
INOUE K, NINOMIYA J, SAITO T, et al. Eribulin, trastuzumab, and pertuzumab as first-line therapy for patients with her2-positive metastatic breast cancer: A phase ii, multicenter, collaborative, open-label, single-arm clinical trial[J]. Invest New Drugs, 2019,37(3):538-547.
- 32
TAKAHASHI M, MIKI S, FUJIMOTO K, et al. Eribulin penetrates brain tumor tissue and prolongs survival of mice harboring intracerebral glioblastoma xenografts[J]. Cancer Sci, 2019,110(7):2247-2257.
- 33
BRADLEY P, ROBIN J. Pm00104 (zalypsis ): A marine derived alkylating agent[J]. Molecules,2014,19(8):12328-12335.
- 34
CAPDEVILA J, CLIVE S, CASADO E, et al. A phase i pharmacokinetic study of pm00104 (zalypsis ) administered as a 24-h intravenous infusion every 3 weeks in patients with advanced solid tumors[J]. Cancer Chemother Pharmacol,2013,71(5):1247-1254.
- 35
MASSARD C, MARGETTS J, AMELLAI N,et al.Phase 1 study of PM00104 (Zalypsis) administered as a 1-hour weekly infusion resting every fourth week in patient with advanced solid tumors[J]. Invest New Drugs, 2013, 31 (3): 623-630.
- 36
PEREZ-RUIXO C, VALENZUELA B, TERUEL C F, et al. Population pharmacokinetics of pm00104 (zalypsis) in cancer patients[J]. Cancer Chemother Pharmacol, 2012,69(1):15-24.
- 37
SALAZAR R, CALLES A, GIL M, et al. Phase i study of carboplatin in combination with pm00104 (zalypsis) in patients with advanced solid tumors[J]. Invest New Drugs,2014,32(4):644-652.
- 38
YAP T A, CORTES-FUNES H, SHAW H, et al. First-in-man phase i trial of two schedules of the novel synthetic tetrahydroisoquinoline alkaloid pm00104 (zalypsis) in patients with advanced solid tumours[J]. Br J Cancer,2012,106(8):1379-1385.
- 39
GONZLEZ-SALES-SALES M, VALENZUELA B, P REZ-RUIXO C, et al. Population pharmacokinetic-pharmacodynamic analysis of neutropenia in cancer patients receiving pm00104 (zalypsis)[J]. Clin Pharmacokinet, 2012,51(11):751-764.
- 40
CASTELLANO D E, BELLMUNT J, MAROTO J P, et al. Phase ii clinical trial of pm00104 (zalypsis) in urothelial carcinoma patients progressing after first-line platinum-based regimen[J]. Cancer Chemother Pharmacol,2014,73(4):857-867.
- 41
JONES R L, FERRARI S, BLAY J Y, et al. A phase ii multicenter, open-label, clinical and pharmokinetic trial of pm00104 in patients with advanced ewing family of tumors[J]. Invest New Drugs,2014,32(1):171-177.
- 42
MARTIN L P,KRASNER C,RUTLEDGE T,et al. Phase II study of weekly PM00104 (ZALYPSIS(R)) in patients with pretreated advanced/metastatic endometrial or cervical cancer[J]. Med Oncol,2013,30 (3):627.
- 43
JUNNA G F F,PENG S H,CHEN H,et al. Research Advances of KRN7000 Analogues and Their Immune Activities[J]. Chin J Org Chem,2015,35 (3) :997-1008.
- 44
NICOL A J,TAZBIRKOVA A,NIEDA M.Comparison of clinical and immunological effects of intravenous and intradermal administration of α-galactosyl ceramide (KRN7000)-pulsed dendritic Cells[J]. Clin Cancer Res,2011,17 (1) :5140-5151.
- 45
冯俊娜,高芳,彭绍辉,等.KRN7000结构类似物及其免疫活性研究进展[J].有机化学,2015,35(5): 997-1008.
- 46
SCHNEIDERS F L,SCHEPER R J,BLOMBERG B M E V,et al. Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection[J]. Clin Immunol,2011,140 (2) :130-141.
- 47
IZZO I,AVALLONE E,MONICA C D,et al. Synthesis of potentially anti-inflammatory IPL576,092-contignasterol and IPL576,092-manoalide hybrids[J].Tetrahedron,2004,60(26):5587-5593.
- 48
TAKEI M,BURGOYNE D L,ANDERSEN R J.Effect of contignasterol on histamine release induced by anti-immunoglobulin E from rat peritoneal mast cells[J]. J Pharm Sci,1994,83 (5) :1234-1235.
- 49
SPERRY S,CREWS P. Haliclostanone sulfate and halistanol sulfate from an Indo-Pacific Haliclona sponge[J]. J Nat prod,1997,60 (4) :29-32.
- 50
SHEN Y,BURGOYNE D L. Efficient synthesis of IPL576,092: a novel anti-asthma agent[J]. J Org Chem,2002,67 (5) :3908-3910.
- 51
ANDERSEN R J. Sponging off nature for new drug leads[J]. Biochem Pharmacol,2017,139 (4) :3-14.
- 52
KASSERRA C E,HARRIS P,STENTON G R,et al. IPL576,092,a novel anti-inflammatory compound,inhibits leukocyte infiltration and changes in lung function in response to allergen challenge[J]. Pulm Pharmacol Ther,2004,17 (1): 309-318.
- 53
REMISZEWSKI S W. The discovery of NVP-LAQ824: from concept to clinic[J]. Curr Med Chem,2003,10 (3) :2393-2402.
- 54
MARTIN M J,COELLO L,FERNANDEZ R,et al. Isolation and first total synthesis of PM050489 and PM060184,two new marine anticancer compounds[J]. J Am Chem Soc,2013,135 (3): 10164-10171.
- 55
PERA B,BARASOAIN I,PANTAZOPOULOU A,et al. New interfacial microtubule inhibitors of marine origin,PM050489/PM060184,with potent antitumor activity and a distinct mechanism[J]. ACS Chem Biol,2013,8 (2) :2084-2094.
- 56
DIEZ M,NAVARRO M J,PERA B,et al. PM060184,a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors[J]. Biochem Pharmacol,2014,88 (4) :291-302.
- 57
NUNES M,KAPLAN J,WOOTERS J,et al. Two photoaffinity analogues of the tripeptide,hemiasterlin,exclusively label alpha-tubulin[J]. Biochemistry,2005,44 (5) :6844-6857.
- 58
RAVI ,ZASK A,RUSH T S,et al. Structure-based identification of the binding site for the hemiasterlin analogue HTI-286 on tubulin[J]. Biochemistry,2005,44 (5) :15871-15879.
- 59
LOGANZO F,DISCAFANI C M,ANNABLE T,et al. HTI-286,a synthetic analogue of the tripeptide hemiasterlin,is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo[J]. Cancer Res,2003,63 (3) :1838-1845.
- 60
LOGANZO F,HARI M,ANNABLE T,et al. Cells resistant to HTI-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in alpha-tubulin[J]. Mol Cancer Ther,2004,3 (4) :1319-1327.
- 61
HARADA M,TSUCHIYA M,MIYAZAKI R,et al. Abstract 1368: Preclinical evaluation of NC-6201,an antibody/drug-conjugated micelle incorporating novel hemiasterlin analogue E7974[J]. Cancer Res,2016,76 (6) :1368-1368.
- 62
SOUZA D M. (+)-discodermolide: a marine natural product against cancer[J]. Sci World J,2004,4 (4) :415-436.
- 63
HUNG D T,CHEN J,SCHREIBER S L. (+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers,blocks taxol binding and results in mitotic arrest[J]. Chem Biol,1996,3 (6) :287-293.
- 64
KLEIN L E,FREEZE B S,SMITH A B,et al. S.B. Horwitz,The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence[J]. Cell Cycle,2005,4 (5) :501-507.
- 65
MITA A,LOCKHART A,CHEN T,et al. A phase I pharmacokinetic (PK) trial of XAA296A (discodermolide) administered every 3 wks to adult patients with advanced solid malignancies[J]. J Clin Oncol,2004,22 (2) :2025.
- 66
KAWANO S,ITO K,YAHATA K. A landmark in drug discovery based on complex natural product synthesis[J]. Sci Rep,2019,9 (9): 8656.
- 67
A Study of E7130 in Participants With Solid Tumors[EB/OL].[2019-06-22].https://clinicaltrials.gov/ct2/show/NCT03444701?term=E7130&rank=1.
- 68
THALE Z,KINDER F R,BAIR K W,et al. Bengamides revisited: new structures and antitumor studies[J]. J Org Chem,2001,66 (1) :1733-1741.
- 69
PHILLIPS P E,ALLEGRINI P,BAIR K W,et al. Identification of a molecular target of a novel cytotoxic compound through proteome analysis[J]. Clin Cancer Res,2001,7 (1) :3689S-3690S.
- 70
TOWBIN H,BAIR K,DECAPRIO J,et al. Proteomics-based target identification: Bengamides as a new class of methionine aminopeptidase inhibitors[J]. J Biol Chem,2004,278 (4) :52964-52971.
- 71
DUMEZ H,GALL H,CAPDEVILLE R,et al. A phase I and pharmacokinetic study of LAF389 administered to patients with advanced cancer[J]. Anticancer Drugs,2007,18 (7): 219-225.
- 72
TSUKAMOTO S,YAMASHITA K,TANE K,et al. an antitumor compound isolated from a sponge,induces G2/M cell cycle arrest and accumulation of polyubiquitinated p53[J]. Biol Pharm Bull,2004,27 (3) :699-701.
- 73
LAVELLE F,ZERIAL A,FIZAMES C,et al. Antitumor activity and mechanism of action of the marine compound girodazole[J]. Invest New Drugs,1991,9 (1) :233-244.
- 74
CATIMEL G,COQUARD R,GUASTALLA J P,et al. a new protein-synthesis inhibitor,in patients with advanced refractory solid tumors[J]. Cancer Chemother Pharmacol,1995,35 (2): 246-248.
- 75
OFLAZOGLU E,STONE I J,GORDON K,et al. Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker[J]. Clin Cancer Res,2008,14 (6) :6171-6180.
- 76
MCEARCHERN J A,OFAZOGLU E,FRANCISCO L,et al. Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities[J]. Blood,2007,109 (7) :1185-1192.
- 77
BERTELSEN L B,SHEN Y Y,NIELSEN T,et al.Vascular effects of plinabulin (NPI-2358) and the influence on tumour response when given alone or combined with radiation[J]. Int J Radiat Biol,2011,87 (1): 1126-1134.
- 78
TANNIR N M,TORRES F A,RAMCHANDREN R,et al. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma[J]. Invest New Drugs,2014,32 (12) :1246-1257.
- 79
RAPHAEL J H,DUARTE R V,SOUTHALL J L,et al. Randomised,double-blind controlled trial by dose reduction of implanted intrathecal morphine delivery in chronic non-cancer pain[J]. BMJ Open,2013,3 (3):312-314.
- 80
WEBSTER L R. The relationship between the mechanisms of action and safety profiles of Intrathecal morphine and ziconotide: A review of the literature[J]. Pain Med,2015,16 (12): 1265-1277.
- 81
DEER T R, POPE J E, HAYEK S M, et al. The polyanalgesic consensus conference (PACC): Recommendations on intrathecal drug infusion systems best practices and guidelines[J]. Neuromodulation,2017,20(2):96-132.
- 82
HORTI J,JUHASZ E,MONOSTORI Z,et al. Phase I study of TZT-1027,a novel synthetic dolastatin 10 derivative,for the treatment of patients with non-small cell lung cancer[J]. Cancer Chemoth Pharm,2008,62 (1):173-180.
- 83
RAY A, OKOUNEVA T, MANNA T, et al. Mechanism of action of the microtubule-targeted antimitotic depsipeptide tasidotin (formerly ILX651) and its major metabolite tasidotin C-carboxylate[J]. Cancer Res,2007,67(8):3767-3776.
- 84
BAI R , EDLER M C , BONATE P L , et al. Intracellular Activation and Deactivation of Tasidotin, an Analog of Dolastatin 15: Correlation with Cytotoxicity[J]. Mol Pharmacol, 2009, 75(1):218-226.
- 85
SALAZAR R , JONES R J , OAKNIN A , et al. A phase I and pharmacokinetic study of elisidepsin (PM02734) in patients with advanced solid tumors[J]. Cancer Chemoth Pharm, 2012, 70(5):673-681.
- 86
GOLDWASSER F, FAIVRE S, ALEXANDRE J, et al. Phase I study of elisidepsin (IrvalecA (R)) in combination with carboplatin or gemcitabine in patients with advanced malignancies[J]. Invest New Drug, 2014, 32(3):500-509.
- 87
MOLINA-GUIJARRO J M, GARCíA C, MACíAS á, et al. Elisidepsin interacts directly with glycosylceramides in the plasma membrane of tumor cells to induce necrotic cell death[J]. Plos One, 2015, 10(10):e0140782.
- 88
RATAIN M J , GEARY D , UNDEVIA S D , et al. First-in-human, phase I study of elisidepsin (PM02734) administered as a 30-min or as a 3-hour intravenous infusion every three weeks in patients with advanced solid tumors[J]. Invest New Drug, 2015, 33(4):901-910.
- 89
PETTY R , ANTHONEY A , METGES J P , et al. Phase Ib/II study of elisidepsin in metastatic or advanced gastroesophageal cancer (IMAGE trial)[J]. Cancer Chemoth Pharm, 2016, 77(4):819-827.
- 90
SUPKO J G, LYNCH T J , CLARK J W , et al. A phase I clinical and pharmacokinetic study of the dolastatin analogue cemadotin administered as a 5-day continuous intravenous infusion[J]. Cancer Chemoth Pharm, 2000, 46(4):319-328.
- 91
MARKS R S, GRAHAM D L , SLOAN J A , et al. A phase II study of the dolastatin 15 analogue LU 103793 in the treatment of advanced Non small-cell lung cancer[J]. Am J Clin Oncol-Canc, 2003, 26(4):336-337.
- 92
ROSE A A N, BIONDINI M, CURIEL R, et al. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer[J]. Pharmacol Therapeut, 2017:S0163725817301298.
- 93
ARNETT S O, TEILLAUD J L, WURCH T, et al. IBC''s 21st annual antibody engineering and 8th annual antibody therapeutics international conferences and 2010 annual meeting of the antibody society[J]. MAbs, 2011, 3(2):133-152.
- 94
DORONINA S O, TOKI B E, TORGOV M Y, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy[J]. Nat Biotechnol, 2003, 21(7):778-784.
- 95
YANG Y M, ZHANG B Y, LI Y,et al. Antibody-drug conjugates as targeted cancer therapeutics[J]. Int J Pha Res,2014,41 (1): 943.
- 96
WALI A F ,MAJID S ,RASOOL S,et al.Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer[J]. Saudi Pha J,2019(27):767-777.
- 97
康建磊, 周辛波, 王彦明. 靶向CD30的抗体偶联药物Brentuximab vedotin研究进展[J]. 临床药物治疗杂志, 2016, 14(5):83-88.
- 98
MARTINO M, FESTUCCIA M, FEDELE R, et al. Salvage treatment for relapsed/refractory hodgkin lymphoma: role of allografting, brentuximab vedotin and newer agents[J]. Expert Opin BioL, 2015:14712598.
- 99
ALPEROVICH A, YOUNES A . Targeting CD30 using brentuximab vedotin in the treatment of hodgkin lymphoma[J]. CANCER J, 2016, 22(1):23-26.
- 100
DOSIO F, BRUSA P, CATTEL L. Immunotoxins and anticancer drug conjugate assemblies: The Role of the Linkage between Components[J]. Toxins, 2011, 3(12):848-883.
- 101
HAIDAV N A,JESSY A,NASSR F,et al. El hemaidi. Brentuximab vedotin plus bendamustine: As salvage regimen for relapsed or refractory hodgkin lymphoma, king abdulaziz medical city–jeddah–KSA experience[J]. Clin Lymph Myel&Leuk, 2019, 19(1):304-305.
- 102
HORWITZ S, O'CONNOR O A, PRO B, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global,double-blind,randomised,phase 3 trial[J]. Lancet,2019 (393):229-240.
- 103
FAIRCLOTH G, CUEVAS C. Kahalalide f and es285: Potent anticancer agents from marine molluscs[J]. Prog Mol Subcell Biol, 2006(43):363-79..
- 104
BROK M W J D, NUIJEN B, MEIJER D M, et al. Pharmaceutical development of a parenteral lyophilised formulation of the investigational anticancer agent ES-285.HCI[J]. Pda J Pharm Sci Tech, 2004, 59(4):246-257.
- 105
DEN BROK M W J, NUIJEN B, GARC A J L, et al. Compatibility and stability of the novel anticancer agent ES-285 HCl formulated with 2-hydroxypropyl-β-cyclodextrin in infusion devices[J]. Pharmazie, 2006, 61(1):21-24.
- 106
CUADROS R ,MONTEJO E, WENDOSELL F, et al.The effects of spisulosine (es-285),a marine natural product,on the morphology and survival of tumor cells[J]. Clin Cancer Res,2000(6):4510S.
- 107
BAIRD R, CLARKE P, WORKMAN P. ES-285, a novel marine anticancer agent: Investigation of mechanism of action using gene expression microarrays[J]. Cancer Res, 2005(65):970.
- 108
ANA M,SáNCHEZ M S, OLEA N, et al. Spisulosine (ES-285) induces prostate tumor PC-3 and LNCaP cell death by de novo synthesis of ceramide and PKCζ activation[J]. Eur J Pha, 2008, 584(2/3):237-245.
- 109
MASSARD C, SALAZAR R, ARMAND J P, et al. Phase I dose-escalating study of ES-285 given as a three-hour intravenous infusion every three weeks in patients with advanced malignant solid tumors[J]. Invest New Drug, 2012, 30(6):2318-2326.
- 110
YAKUSHIJI F, TANAKA H, MUGURUMA K, et al. Water-soluble prodrug of antimicrotubule agent plinabulin: effective strategy with click chemistry[J]. Chemistry, 2011, 17(45):12587-12590.
- 111
YAKUSHIJI F, TANAKA H, MUGURUMA K, et al. Prodrug study of plinabulin using a click strategy focused on the effects of a replaceable water-solubilizing moiety[J]. Chem Pharm Bull, 2012, 60(7):877-881.
- 112
李东, 姜雪峰. 来自海洋的馈赠:神奇抗癌症分子曲贝替定[J]. 科学通报, 2019, 64(1):12-14.
- 113
LARSEN A K, GALMARINI C M, INCALCI M. Unique features of trabectedin mechanism of action[J]. Cancer Chem Pha, 2016, 77(4):663-671.
- 114
INCALCI D, BADRI M N, GALMARINI C M, et al. Trabectedin, a drug acting on both cancer cells and the tumour microenvironment[J]. Brit J Cancer, 2014, 111(4):646-650.
- 115
GERMANO G, FRAPOLLI R, BELGIOVINE C, et al. Role of macrophage targeting in the antitumor activity of trabectedin[J]. Cancer Cell, 2013, 23(2):249-262.
- 116
孙友松. 2015年10月美国和欧盟新批准药物概述[J]. 药学进展, 2016(11):877-880.
- 117
MONK B J, HERZOG T J, KAYE S B, et al. Trabectedin plus pegylated liposomal doxorubicin (PLD) versus PLD in recurrent ovarian cancer: Overall survival analysis[J]. Eur J Cancer, 2012, 48(15):2361-2368.
- 118
RINEHART K L, HOLT T G, FREGEAU N L, et al. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: Potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata[J]. J Org Chem, 1990, 55(15):4512-4515.
- 119
MANZANARES I, CUEVAS C, GARCíA-NIETO R, et al. Advances in the chemistry and pharmacology of ecteinascidins, a promising new class of anticancer agents[J].Curr Med Chem Anticancer Agents, 2001, 1(3):257-276.
- 120
RATAIN M J, ELEZ M E, SZYLDERGEMAJN S, et al. 434 First-in-man phase I study of PM01183 using an accelerated titration design[J]. Eur J Cancer Suppl, 2010, 8(7):137-138.
- 121
连炜,叶波平.海洋天然抗肿瘤活性产物的临床研究现状[J]. 药学进展,2009 (33) :204-211.
- 122
TOURNEAU C L, FAIVRE S, CIRUELOS E, et al. Reports of clinical benefit of plitidepsin (aplidine), a new marine-derived anticancer agent, in patients with advanced medullary thyroid carcinoma[J]. J Clin Oncol, 2009, 33(2):132-136.
- 123
BARBOZA N M, MEDINA D J, BUDAK-ALPDOGAN T, et al. Plitidepsin (Aplidin) is a potent inhibitor of diffuse large cell and Burkitt lymphoma and is synergistic with rituximab[J]. Cancer Biol Ther, 2012, 13(2):114-122.
- 124
VAN A L, ROSING H, TIBBEN M M, et al. Metabolite profiling of the novel anti-cancer agent, plitidepsin, in urine and faeces in cancer patients after administration of 14C-plitidepsin[J].Cancer Chemother Pharmacol, 2018,82(3):441-455.
- 125
APLIDIN plitidepsin 2 mg powder for infusion vial and diluent ampoule composite pack[EB/OL].[2019-06-22].http://search.tga.gov.au/s/search.html?collection=tga-artg&profile=record&meta_i=291661.
- 126
AHUJA D, GEIGER A,RAMANJULU J M,et al. Inhibition of protein synthesis by didemnins: cell potency and SAR[J]. J Med Chen,2000, 43(22):4212-4218.
- 127
RINEHART K L. Antitumor compounds from tunicates[J]. Med Res Rey, 2000, 20(1):1-27.
- 128
RINEHART K L, GLOER J J B,HUGHES R G, et al. Didemnins: antiviral and antitumor depsipeptides from a caribbean tunicate[J]. Science, 1981, 212(4497):933-935.
- 129
SIRDESHPANDE B V,TOOGOOD P L. Mechanism of protein synthesis inhibition by didemnin B in vitro[J]. Biochemistry, 1995, 34(28):9177-9184.
- 130
MENG L,SIN N,GREWS G M.The antiproliferative agent didemnin B uncompetitively inhibits palmitoyl protein thioesterase[J]. Biochemistry, 1998, 37(29):10488-10492.
- 131
GREWS G M,LANE W S,SCHREIBER S L. Didemnin binds to the protein palmitoyl thioesterase responsible for infantile neuronal ceroid lipofuscinosis[J]. Proc Natl Acad Sci USA,1996, 93(9):4316-4319.
- 132
CHUN H G, DAVIES B, HOTH D,et al. The first marine compound entering clinical trials as an antineoplastic agent[J]. Inevst New Drug,1986, 4(3):279-284.
- 133
DORR F A, KUHN J, PHILLIPS J,et al. Phase I clinical and pharmacokinetic investigation of didemnin B,a cyclic depsipeptide[J]. Eur J Cancer Clin Oncol, 1988, 24(11):1699-1706.
- 134
VERA M D, JOULLIE M M. Natural products as probes of cell biology: 20 years of didemnin research[J]. Med Res Rev, 2002, 22(2):102-145.
- 135
HENE W A, KULARATNE S A, AYALA-LOPEZ W, et al. Synthesis and activity of folate conjugated didemnin B for potential treatment of inflammatory diseases[J]. Bioorg Med Chem Lett, 2012, 22(1):709-712.
- 136
LAM A P, SPARANO J A, VINCIGUERRA V,et al. Phase II study of paclitaxel plus the protein kinase C inhibitor bryostatin-1 in advanced pancreatic carcinoma[J]. Am J Clin Oncol, 2010, 33(2):121-124.
- 137
MORGAN R J, LEONG J L, CHOW W, et al. Phase II trial of bryostatin-1 in combination with cisplatin in patients with recurrent or persistent epithelial ovarian cancer: a California cancer consortium study[J]. Inevst New Drug, 2012, 30(2):723-728.
- 138
BLANCO F A, CZIKORA A, KEDEI N, et al. Munc13 is a molecular target of bryostatin 1[J]. Biochemistry, 2019, 58(27):3016-3030.
- 139
Making Bryostatin 1 through Smart Chemistry[J]. Cancer Discov, 2017, 7(12):1358-1359.
- 140
杨玫婷,李春霞, 管华诗,等. 海洋糖类药物研究进展[J]. 中国海洋药物,2013,32(2):71-79.
- 141
周国武,王雪琦,田野苹.α7烟碱型乙酰胆碱受体与炎症调节[J]. 现代生物医学进展,2009(14):204-207.
- 142
THOMSEN M S, MIKKELSEN J D. The α7 nicotinic acetylcholine receptor ligands methyllycaconitine,NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia[J].J Neuroimmunol, 2012, 251(1/2):65-72.
- 143
KOX M, VANVELZEN J F, POMPE J C, et al. GTS-21 inhibits pro-inflammatory cytokine release independent of the Toll-like receptor stimulated via a transcriptional mechanism involving JAK2 activation[J]. Biochem Pharmacol, 2009, 78(7):863-872.
- 144
FREEDMAN R,OLINCY A,BUCHANAN R,et al. Initial phase 2 trial of a nicotinic agonist in schizophrenia[J]. Am J Psychiat,2008, 165(8):1040-1047.
- 145
OLINCY A, STEVENS K E. Treating schizophrenia symptoms with an α7 nicotinic agonist,from mice to men[J]. Biochem pharmacol, 2007, 74(8):1192-1201.
- 146
徐冰心,康健磊. DMXBA抗老年性痴呆研究进展[J]. 中国老年学杂志,2005, 25(2):228-230.
- 147
李峰,张良,管华诗,等. 海洋抗神经退行性疾病候选药物GTS-21及其类似物的研究进展[J]. 中国海洋药物,2017,36(2):88-94.
- 148
WANG J,LI R,PENG Z,et al. GTS-21 reduces inflammation in acute lung injury by regulating M1 polarization and function of alveolar macrophages[J]. Shock, 2019, 51(3):389-400.
- 149
GARG B K, LORING R H. GTS-21 has cell-specific anti-inflammatory effects independent of alpha7 nicotinic acetylcholine receptors[J].PLos One,2019, 14(4):e0214942.
- 150
GAO Y, KANG K, ZHANG X, et al. Effect of splenectomy on attenuation of LPS-induced AKI through GTS-21-induced cholinergic anti-inflammatory pathway[J]. Am J Transl Res,2019,11(4): 2540-2549.
- 151
LIU D, LI T, LUO H, et al. The effect of the cholinergic anti-inflammatory pathway on collagen-induced arthritis involves the modulation of dendritic cell differentiation[J]. Arthritis Res Ther,2018, 20(1):263.
- 152
KONG W, KANG K, GAO Y, et al. GTS-21 protected against LPS-induced sepsis myocardial injury in mice through alpha7nAChR[J]. Inflammation,2018, 41(3):1-11.
- 153
TAKATA K, AMAMIYA T, MIZOGUCHI H, et al. Alpha7 nicotinic acetylcholine receptor-specific agonist DMXBA (GTS-21) attenuates amyloid-β accumulation through suppression of neuronal γ-secretase activity and promotion of microglial amyloid-β phagocytosis and ameliorates cognitive impairment in a mouse model of Alzheimer’s disease[J]. Neurobiolo Aging, 2018(62):197-209.
- 154
YUE Y, LIU R, CHENG W,et al. GTS-21 attenuates lipopolysaccharide-induced inflammatory cytokine production in vitro by modulating the Akt and NF-kappaB signaling pathway through the alpha7 nicotinic acetylcholine receptor[J]. Int Immunopharmacol,2015,29(2):S1567576915301387.
- 155
朱云娟. 烟碱型乙酰胆碱受体激动剂GTS-21对鼠实验性结肠炎的影响[J]. 南京医科大学学报(自然科学版),2017(04):45-50.
- 156
吴彩霞,姬汴生. 藻酸双酯钠对硝普钠所致神经细胞株PC12细胞损伤的保护作用[J]. 中国药房, 2008, 19(13):984-986.
- 157
谢松强,杜钢军,姬汴生,等. 藻酸双酯钠对大鼠局灶性脑缺血再灌注后脑环境的影响及对鸡胚背根神经节的促生长作用[J]. 中国药学杂志,2006,46 (1):33-36.
- 158
刘斌,张宇,刘昊,等. 藻酸双酯钠对大鼠实验性急性脑缺血再灌注后p53表达的影响[J].中国煤炭工业医学杂志, 2005, 8(1):82-83.
- 159
陈金喜. 藻酸双酯钠治疗脑梗死患者血液流变学动态观测[J].中国实用医药,2012(14):165-166.
- 160
HIRSH J, WARKENTIN T E, SHAUGHNESSY S G, et al. Heparin and low-molecular-weight heparin: mechanisms of action pharmacokinetics dosing monitoring efficacy and safety[J]. Chest,2001, 119(1):64-94.
- 161
马丽丽,王兆钺,裘丽红,等. 藻酸双酯钠对急性脑梗死的抗血小板作用及临床疗效[J].血栓与止血学,2005(6):257-259.
- 162
LIN C Z,GUAN H S,LI H H,et al. The influence of molecular mass of sulfated propylene glycol ester of low-molecular-weight alginate on anticoagulant activities[J]. Eur Polym, 2007, 43(7):3009-3015.
- 163
张秀海,王艳玲,郭爱香,等. 注射用藻酸双酯钠治疗高脂血症50例临床观察[J].河北医学,2011(11):57-61.
- 164
郑雪梅,张虔. 肠溶阿司匹林与藻酸双酯钠联用对短暂性脑缺血发作的影响[J]. 中国中医药咨讯,2012(1):189-189.
- 165
李鹏丽,徐雪莲,李春霞,等.口服藻酸双酯钠纳米粒的制备、体外释药特性及其药效学研究[J].中国海洋药物,2011,30 (2):19-24.
- 166
李春霞,孙杨,管华诗.海洋药物藻酸双酯钠研究进展及启示[J].生命科学,2012(9):1019-1025.
- 167
冯桂芹,穆守刚,马龙乐,等.甘露醇烟酸酯治疗舒张期高血压疗效观察(附30例报道)[J].医学综述, 1996, 2(1):37-38.
- 168
路文静,武士锋,杨洪涛.海昆肾喜胶囊对肾脏保护机制的研究进展[J].北京中医药, 2014, 33(2):151-153.
- 169
闫晨,邸志权,朱振娜,等.岩藻聚糖硫酸酯FV对大鼠的抗血栓作用研究[J].现代药物与临床,2019(7): 1947-1951.
- 170
李海洲,张琳,王瑾.岩藻聚糖硫酸酯对大鼠缺血再灌注心肌损伤的保护作用及抗氧化应激机制研究[J].中国临床药理学杂志, 2019, 35(10):67-70.
- 171
齐俊华,王展,石德玲,等.小有刺参硫酸软骨素和岩藻聚糖硫酸酯抗血小板聚集活性的比较[J].中国海洋药物, 2019, 38(1):42-48.
- 172
宋小雨,玄光善,于广利.岩藻聚糖硫酸酯药理学活性研究进展[J]中国海洋药物, 2017,36(1):92-97.
- 173
Carragelose, the antiviral polymer from red seaweed [EB/OL].[2019-06-22].https://www.carragelose.com/.
- 174
BURIK A. Update: Seaweed-Derived Treatment for Common Cold Approved in the EU [J/OL]. Labiotech,2018. https://www.labiotech.eu/medical/marinomed-biotech-common-cold/.
- 175
ECCLES R,MEIER C,JAWAD M,et al.Efficacy and safety of an antiviral Iota-Carrageenan nasal spray: a randomized,double-blind,placebo-controlled exploratory study in volunteers with early symptoms of the common cold[J].Resp RES,2010, 11(1):108.
- 176
KOENIGHOFER M, LION T,BODENTEICH A,et al.Carrageenan nasal spray in virus confirmed common cold: individual patient data analysis of two randomized controlled trials[J].Multidiscip Resp Med,2014(9):57.
- 177
ECCLES R,WINTHER B,JOHNSTON S L,et al.Efficacy and safety of iota-carrageenan nasal spray versus placebo in early treatment of the common cold in adults: the ICICC trial[J].Resp Res, 2015, 16(1):121.
- 178
Nicox acquires Carragelose anti-viral eye drop program[EB/OL].[2019-06-22].https://www.nicox.com/news-media/news/nicox-acquires-carragelose-anti-viral-eye-drop-program/.
- 179
耿美玉.新型抗阿尔茨海默病药物甘露寡糖二酸[J].中国药理学与毒理学杂志,2017(5):88-89.
- 180
THOMSON P,MEDINA D A,GARRIDO D. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization[J].Food MicrobioL,2018(75):37-46.
- 181
WANG X,SUN G,FENG T,et al.Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression[J].Cell Res,2019(29):787-803.
- 182
中国科学家发明阿尔茨海默病新药获国际关注[J].上海医药,2018,39(21):28.
- 183
殷钢,李琛,何清华,等.螺旋藻中藻胆蛋白和多糖的分离纯化及产品特性[J].精细化工,1999(02):10-13.
- 184
宋玉娟.藻糖蛋白单糖组成两种分析方法的初步探讨[J].中国生化药物杂志,2009(01):30-32.
- 185
胡群宝,郭宝江.螺旋藻多糖和糖蛋白的提纯及其理化特性研究[J].海洋科学, 2001(07):41-44.
- 186
张栋.抗脑缺血海洋新药D-聚甘酯(未上市)[EB/OL].[2019-07-22].http://smp.ouc.edu.cn/sdgkl/f0/10/c12001a192528/page.psp.
- 187
谢惠民,李素霞.利福平的临床应用现状及其进展[J].中国药事,1990,4(4):246-248.
- 188
张文三.利福霉素的临床应用[J].临床荟萃, 1990(10):41-42.
- 189
于海军.β-内酰胺类抗生素作用机制及头孢菌素发展[J].石家庄职业技术学院学报,2009(02):18-22.
- 190
孟现民,董平,姜旻,等.头孢菌素类抗菌药物的开发历程与研究近况[J].上海医药, 2011(05):14-17.
- 191
韦翠霞.头孢菌素类药物的临床应用[J].中西医结合心血管病电子杂志,2016, 4(13):188-189.
- 192
戴德银,卢海波,赵俊.头孢菌素的分类、药效及临床应用[J].现代临床医学,2007, 29(A01):114-117.
- 193
CIMINO P J,HUANG L,DU L,et al. Plinabulin, an inhibitor of tubulin polymerization, targets KRAS signaling through disruption of endosomal recycling[J]. Biomed Rep,2019,10(4): 218-224.
- 194
MA M,DING Z,WANG S,et al. Polymorphs,co-crystal structure and pharmacodynamics study of MBRI-001,a deuterium-substituted plinabulin derivative as a tubulin polymerization inhibitor[J].Bioorg Med Chem,2019(27): 1836-1844.
- 195
MILWARD M,MAINWARING P,MITA A,et al. Phase 1 study of the novel vascular disrupting agent plinabulin (NPI-2358) and docetaxel[J]. Invest New Drug, 2012, 30(3):1065-1073.
- 196
BERTELSEN L B,SHEN Y Y,NIELSEN T,et al.Vascular effects of plinabulin (NPI-2358) and the influence on tumour response when given alone or combined with radiation[J].Int J Radiat Biol, 2011, 87(11):1126-1134.
- 197
FELING R H,BUCHANAN G O,MINCER T J,et al.Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source,a marine bacterium of the new genus salinospora[J].Angew Chem Int Edit, 2010, 42(3):355-357.
- 198
MACHERLA V R,MITCHELL S S,MANAM R R,et al. Structure-activity relationship studies of salinosporamide A (NPI-0052),a novel marine derived proteasome inhibitor[J].J Med chem,2005, 48(11):3684-3687.
- 199
王国如,江程,任晓东,等.共价型蛋白酶体抑制剂的研究进展[J].中国新药杂志, 2011(19):56-64.
- 200
李宝军.多发性骨髓瘤分子靶向治疗的研究进展[J].医学综述, 2012, 18(6):864-868.
- 201
MA M,ZHAO J,CHENG H,et al. In vitro and in vivo pharmacokinetic and pharmacodynamic study of MBRI-001,a deuterium-substituted plinabulin derivative as a potent anti-cancer agent[J].Bioorg Med Chem, 2018:S0968089618310964.
- 202
MA L,DIAO A. Marizomib,a potent second generation proteasome inhibitor from natural origin[J].Anti-Cancer Agent Me, 2015, 15(3):298-306.
- 203
KOSKI R R. Omega-3-acid Ethyl Esters (Lovaza) For Severe Hypertriglyceridemia[J].Pharm Ther, 2008, 33(5):271-303.
- 204
FORD N A,ROOSSI E L,BARNETT K,et al.Omega-3-Acid Ethyl Esters Block the Protumorigenic Effects of Obesity in Mouse Models of Postmenopausal Basal-like and Claudin-Low Breast Cancer[J].Cancer Prev Res,2015, 8(9):796.
- 205
CLUECK C J,KHAN N,RIAZ M,et al.Titrating lovaza from 4 to 8 to 12 grams/day in patients with primary hypertriglyceridemia who had triglyceride levels >500 mg/dl despite conventional triglyceride lowering therapy[J].Lipids Health Dis,2012, 11(1):143.
- 206
SPINDLER S R,MOTE P L,FLEGAL J. Dietary supplementation with Lovaza and krill oil shortens the life span of long-lived F1 mice[J].AGE, 2014, 36(3):9659-898.
- 207
RYAN S S PA S, SANCILIO F D. A dietary supplement with a high eicosapentaenoic acid to docosahexaenoic acid ratio reduces triglyceride levels in mildly hypertriglyceridemic subjects[J]. Food Nutr Sci, 2009, 16(2):183-192.
- 208
宋恭帅,张蒙娜,马永钧,等.大目金枪鱼加工副产物中鱼油提取制备及EPA分离纯化[J]. 核农学报,2019 (33):1122-1130.
- 209
JACOBSON T A. A new pure ω-3 eicosapentaenoic acid ethyl ester (AMR101) for the management of hypertriglyceridemia: the MARINE trial[J]. Expert Rev Cardiovasc Ther,2012, 10(6):687-695.
- 210
BALLANTYNE C M, BAYS H E, KASTELEIN J J, et al. Efficacy and Safety of Eicosapentaenoic Acid Ethyl Ester (AMR101) Therapy in Statin-Treated Patients With Persistent High Triglycerides (from the ANCHOR Study)[J]. Am J Cardiol, 2012, 110(7):984-992.
- 211
张一宸. FDA批准Vascepa治疗高甘油三酯血症[EB/OL].[2012-08-02].http://www.medsci.cn/article/show_article.do?id=4cda8500ee.
- 212
Drug Approval Package: Epanova (Omega-3-carboxylic acids)[EB/OL].[2019-06-22]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205060Orig1EpanovaTOC.cfm.
- 213
The Effect of Multiple Doses of Epanova on the Multiple-Dose Pharmacokinetics of Simvastatin in Healthy Normal Subjects[EB/OL].[2019-06-22].https://clinicaltrials.gov/ct2/show/NCT01486433?term=Epanova&draw=2&rank=10.
- 214
LATREILLE J, BATIST G,LABERGE F, et al. Phase I/II trial of the safety and efficacy of AE-941 (Neovastat) in the treatment of non-small-cell lung cancer[J]. Clin Lung Cancer, 2003, 4(4):231-236.
- 215
叶晓春,林能明,谢惠民.液态鲨鱼软骨制剂AE-941(卡特消)抗肿瘤作用研究进展[J].中国肿瘤,2004, 13(12):794-798..
- 216
CHAU R, KALAITZIS J A, NEILAN B A. On the origins and biosynthesis of tetrodotoxin[J].ISRN Toxicol, 2011, 104(1/2):0-72.
- 217
赖晓慧,肖义军.河豚毒素的研究进展[J].福建畜牧兽医,2019(41) :23-24,29.
- 218
TATSUNO R, GAO W, IBI K, et al. Profile differences in tetrodotoxin transfer to skin and liver in the pufferfish Takifugu rubripe[J]. J Med Toxicol, 2017(130):73-78.
- 219
YIN X, KIRIAKE A, OHTA A, et al.A novel function of vitellogenin subdomain,vWF type D,as a toxin-binding protein in the pufferfish Takifugu pardalis ovary[J]. J Med Toxicol,2017:S0041010117301861.
- 220
SILLS A K J R, WILLIAMS J I, TYLER B M, et al. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature[J]. Cancer research, 1998, 58(13):2784-2792.
- 221
TEICHER B A, WILLIAMS J I, TAKEUCHI H, et al. Potential of the aminosterol,squalamine in combination therapy in the rat 13,762 mammary carcinoma and the murine Lewis lung carcinoma[J]. Anticancer Res, 1998, 18(4A):2567.
- 222
WALKER B T, HOUSTON T A. Squalamine and its derivatives as potential antitubercular compounds[J]. Tuberculosis, 2013, 93(1):102-103.
- 223
ALHANOUT K, MALESINKI S,VIDAL N, et al. New insights into the antibacterial mechanism of action of squalamine[J]. J Ant Chem, 2010,65(8):1688-1693.
- 224
ALHANOUT K, ROLAIN J M, BRUNEL J M. Squalamine as an example of a new potent antimicrobial agents class: a critical review[J]. Curr Med Chem, 2010, 17(32):3909-3917.
- 225
BRUNEL J M, SALMI C, LONCLE C, et al. Squalamine: a polyvalent drug of the future[J]. Curr Med Chem, 2005, 5(4):267-272.
- 226
CHEN W H, SHAO X B, MOELLERING R C, et al. Regen,A bioconjugate approach toward squalamine mimics: Insight into the mechanism of biological action[J]. Bioconjug Chem, 2006, 17(6):1582-1591.
- 227
DJOUHRI-BOUKTAB L,ALHANOUT K,ANDRIEU V, et al. Squalamine ointment for Staphylococcus aureus skin decolonization in a mouse model[J]. J Antimicrob Chemother, 2011,66(6):1306-1310.
- 228
DJOUHRI-BOUKTAB L, ALHANOUT K, ANDRIEU V, et al. Soluble squalamine tablets for the rapid disinfection of home nebulizers of cystic fibrosis patients[J]. J Cyst Fibros, 2012,11(6):555-559.
- 229
ZASLOFF M, ADAMS A P, BECKERMAN B, et al. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential[J]. Proc Natl Acad Sci USA, 2011,108(38):15978-15983.
- 230
ZHOU S, ZHENG Y, YANG B, et al. Study on synthesis of key squalamine intermediate 7alpha,24R-dihydroxy-5alpha-cholestan-3-one[J]. Steroids, 2003, 51(10):1177.
- 231
SCHILLER J H, BITTNER G. Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization[J]. J Imm Cancer, 1999, 5(12):4287.
- 1
摘 要
新颖结构和重要生物活性天然产物的发现是创新药物开发的关键要素,海洋生物资源以其多样性、复杂性、特殊性成为新药研发中先导化合物的重要来源。截至目前,基于海洋天然产物或其衍生物开发而成功上市的药物有17种,进入III期、II期、I期临床研究的活性物质分别有8、12、8种,而折戟于临床阶段的有4种;本文对其生物来源、作用机理、临床研究进展作了简要概述,期待海洋药物学科能更快、更好地发展,产生更多新药,为人类重大疾病的治疗做出更大贡献。
Abstract
The structural novelty and biological activity of chemical entities have been emphasized as major concerns in developing innovative drugs. Marine biological resources have become an important source of leading compounds in new drug research and development due to their diversity,complexity and specialarity. Up to now,there are up to 17 clinical available marine drugs having been developed from marine natural products or their derivatives,together with 8,12 and 8 leading compounds under phase III,II and I clinical study,respectively,while 4 kinds of drug candidates failed in the clinical stage. In this paper,the biological sources,mode of action and the progress of clinical studies are briefly reviewed. It is expected to benefit the marine drug research,accelerate marine drug development pipelines and provide efficient medication treatments to the combat fighting against major diseases threatening human health.