海洋真菌 Aspergillus sp. SCS-KFD03
化学成分研究

张文1·2, 刁孔栋2, 马文青2, 黄圣卓2, 周丽文2, 戴秀芳2, 邓世明1*, 赵友兴2*

(1. 海南大学 海南热带生物资源教育部重点实验室，海洋学院，海口 572228；
2. 中国热带农业科学院热带生物技术研究所，农业部热带作物生物遗传育种重点实验室，海南 海口 571101)

摘 要: 目的 对海洋真菌 Aspergillus sp. SCS-KFD03 的发酵液中化学成分进行分离鉴定，并确定其生物活性。方法 采用硅胶柱色谱、Sephadex LH-20 凝胶柱色谱和高效液相色谱等技术进行分离纯化，运用各种波谱方法对分离所得化合物进行结构鉴定，并测定化合物乙酰胆碱酶抑制和 α-糖苷酶抑制活性。结果 分离鉴定了 9 个化合物，经鉴定为 phomaflorigol A1(1)，5-(乙酰氧基甲基) 吡喃-3-酮(2)，phomapyrone C(3)，4-羟基苯并并呋喃(4)，penicillinavine(5)，22(E)-5α,8α-epidioxycergost-6,22-二烯-3β-ol(6)，lucidal(7)，dankasterone A(8)，bis(2-methylheptyl)-phthalate(9)，其中化合物 4 为新天然产物。化合物 5, 6, 7 和 9 具有较强的乙酰胆碱酶抑制活性，化合物 5 具有显著抑制 α-糖苷酶活性。结论 化合物 1～9 均为首次从海洋真菌属 Aspergillus sp. SCS-KFD03 中分离得到，部分化合物具有乙酰胆碱酶和 α-糖苷酶的抑制活性。

关键词: 海洋真菌; 化学成分; 化学成分; 乙酰胆碱酶抑制活性; α-糖苷酶抑制活性

Study on the chemical constituents from the marine-derived fungus Aspergillus sp. SCS-KFD03

ZHANG Yu1·2, KONG Fan-dong2, MA Qing-yun2, HUANG Sheng-zhuo2, ZHOU Li-man2, DAI Hao-fu2, DENG Shi-ming1*, ZHAO You-xing2*

(1. Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Ocean, Hainan University, Haikou 570228, China; 2. Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China)

Abstract: Objective To study the chemical constituents from the fermentation broth of marine-derived fungus Aspergillus sp. strain SCS-KFD03. Methods The constituents were isolated and purified by Silica gel, Sephadex LH-20 column chromatography and HPLC chromatography and identified by spectral data analyses, while their acetylcholinesterase and α-glucosidase inhibitory activities were evaluated.

*△基金项目: 公益性行业(农业)科研专项(2013033117); 国家自然科学基金青年科学基金项目(41606088); 天津大学-海南大学协同创新基金资助
作者简介: 张文(1992-), 男, 硕士研究生, 研究方向: 海洋天然产物。
*通讯作者: 邓世明, 男, 博士, 教授。Tel:0898-66284993; E-mail: dsm701@126.com
赵友兴, 男, 博士, 研究员。Tel:0898-66289095; E-mail: zhaoyouxing@itiba.org.cn
收稿日期: 2016-08-19
Results Nine compounds were isolated from the marine-derived fungus *Aspergillus* sp. SCS-KFD03 and identified as phonaligol A (1), 5- (acetoxyethyl) furan-3-acid (2), homopapyrone C (3), 4-hydroxyisobenzofuran-1(3H)-one (4), penicillinavine (5), 22(E)-5a, 8a-epidioxyergosta-6,22-dien-3β-ol (6), lucidal (7), dankasterone A (8), bis-(2-methylheptyl)-phthalate (9). Among the compounds, compound 4 was a new natural product. The acetylcholinesterase and α-glucosidase inhibitory activities of these compounds were evaluated at the first time. Compounds 5, 6, 7, and 9 showed weak inhibitory activities against acetylcholinesterase. Compound 5 had stronger inhibitory activity against α-glucosidase than the positive drug acarbose, while compounds 8 and 9 exhibited inhibitory activity against α-glucosidase as strong as the positive drug. **Conclusion** All the compounds were obtained from the *Aspergillus* sp. SCS-KFD03 for the first time, and some of them had a certain inhibitory activity on acetylcholinesterase and α-glucosidase.

Key words: marine-derived fungus *Aspergillus* sp.; chemical composition; acetylcholinesterase inhibitory activity; α-glucosidase inhibitory activity

海洋约占地球表面积的 71%，其生物量占到地球总容量的 80%，是现在保存最完整、资源最丰富、生物多样性显著的天然生物资源库[1]。2007 年，由 Blunt 和 Munro 编著的《海洋天然产物词典》(Dictionary of Marine Natural Products)一书中记载了截止到 2006 年中期共发现的 3 万余种海洋天然产物[2]。另外，仅 2006 年、2007 年就分别发现新的海洋天然产物 79 个和 961 个[3]。近年来，海洋微生物已成为海洋天然产物的新大来源之一[4]，海洋环境的特殊性造成了海洋微生物种类及其次生代谢产物的多样性。海洋真菌作为海洋微生物的重要组成部分，由于其遗传背景复杂，次生代谢产物丰富、产量高等特点，成为海洋微生物新天然产物的重要来源。在药物先导化合物的发现，环境污染治理和海洋环境修复等方面发挥着重要作用[5]。

曲霉（*Aspergillus*）是真菌中的 1 个大属，从 1992 年 Shinggu 等人首次报道海洋曲霉来源的新天然产物 fumiquinazolines A – C[6], 到 2014 年，已发现海洋曲霉来源新天然产物 512 个。根据已有统计，2010－2013 年初的海洋微生物来源新天然产物中，研究最多的是曲霉土真菌，占海洋真菌来源新天然产物的 31%[11]。从该属真菌中分离出了多种类型的次级代谢产物，包括聚酮、萜类、甾体、苷类、生物碱、脂肪酸、糖苷、肽类等，且很多化合物表现出抗菌（肿瘤细胞毒）、抑菌、抗氧化（自由基清除）和抗寄生虫等生物活性[12]。由此可见，曲霉属真菌的天然产物结构丰富，是海洋天然产物乃至新药发现的重要资源。本实验通过对 1 株海洋曲霉属真菌 SCS-KFD03 菌发酵液的化学成分进行研究，从中分离鉴定了 9 个化合物，并测定了化合物的乙酰胆碱酯酶和 α-糖苷酶的抑制活性。

1 **实验部分**

1.1 **仪器与材料**

薄层层析硅胶板、柱层析用硅胶（200～300目）和硅胶 H（青岛海洋化工厂）；Sephadex LH-20凝胶（GE公司）；反相材料 C18（FU-JI公司）；NMR 采用 Bruker AV-500 型超导核磁共振波谱仪、TMS 为内标；MS 采用 Autospec-3000 质谱仪；高效液相色谱仪采用 Waters1525，Waters C18半制备柱（250 mm × 10 mm, 5 μm）；乙酰胆碱酯酶（Solarbio公司）；4-硝基苯基-α-D-吡喃葡萄糖苷（PNPG），碘化硫代乙酰胺钾、二硫代二硝基苯甲酸（DNTB）、α-糖苷酶（酵母来源）、阿卡波糖和他克林等（Sigma公司）；ELX-80酶标仪（美国宝特公司）。

1.2 **方法**

1.2.1 **菌种来源与发酵**

海洋动物样品方格星虫（*Sipunculus nudus*）2015年 8 月采集自海海口，从中分离得到真菌菌株 SCS-KFD03，经 ITS 序列分析鉴定为曲霉属（*Aspergillus* sp.）真菌。将菌株接种于斜面培养基（马铃薯葡萄糖琼脂，PDA），在 28 ℃下培养 3～5 d。配制 60 L 真菌二号培养基（麦芽糖 20 g，味
精 10 g，KH₂PO₄ 0.5 g，MgSO₄·7H₂O 0.3 g，葡萄糖 10 g，酵母膏 3 g，玉米浆 1 g，甘露醇 20 g，pH 6.5，自来水 1 L/分别装于 1000 mL 三角瓶中，经高压灭菌器 121 ℃灭菌 25 min 后，从斜面培养基中接种适量孢子到灭菌后的三角瓶中，放置于静止培养架上室温培养 30 d。

1.2.2 提取与分离

发酵结束后用纱布过滤将菌株的发酵液和菌丝体分离。采用 2 倍体积的乙酸乙酯将发酵液萃取 3 次后，合并萃取液减压浓缩得到浸膏 18.5 g。菌丝体用 80% 丙酮水溶液浸泡 24 h 并机械声破碎，合并 3 次提取后的提取液，减压浓缩至干丙酮后，用 3 倍体积乙酸乙酯萃取 3 次，合并乙酸乙酯萃取液，减压浓缩至干乙酸乙酯得到的菌丝体的萃取物 23 g。经过高效液相色谱图谱分析后，发酵液和菌丝体的主要成分基本一致，合并得到 24.1 g 浸膏。

相浸膏经减压硅胶柱（石油醚和乙酸乙酯体系）以 10：1～1：2 的梯度脱洗，分段收集，通过薄层层析检测，合并相同的部分，得到 8 个组分（Fr. 1～Fr. 8）。Fr. 2（3 g）经色谱硅胶柱色谱（石油醚/水系统，55%～100%，体积分数）梯度洗脱后，经过凝胶柱 Sephadex LH-20（100% 甲醇）纯化得到化合物 9（5.7 mg）。Fr. 3（4 g）经色谱硅胶柱色谱（石油醚/水系统，55%～100%，体积分数）梯度洗脱后，采用硅胶柱色谱以石油醚-乙酸乙酯（8：1～5：1）梯度洗脱和 Sephadex LH-20 色谱（氯仿：甲醇＝1：1），结合半制备 HPLC（C₁₈半制备柱，H₂O，50%～100%，体积分数）梯度洗脱后，采用硅胶柱色谱以石油醚-乙酸乙酯（6：1～3：1）梯度洗脱和 Sephadex LH-20 色谱（石油醚，100% 甲醇）分离得到化合物 3（2.2 mg）。Fr. 4（5 g）经色谱硅胶柱色谱（石油醚/水系统，40%～100%，体积分数）梯度洗脱后，采用硅胶柱色谱以石油醚-乙酸乙酯（6：1～3：1）梯度洗脱和 Sephadex LH-20 色谱（氯仿：甲醇＝1：1）纯化得到化合物 6（1.0 mg）和 8（2.2 mg）。Fr. 6（5 g）经色谱硅胶柱色谱（石油醚/水系统，40%～100%，体积分数）梯度洗脱后，经半制备 HPLC（C₁₈半制备柱，H₂O，50%～100%，体积分数）纯化得到化合物 5（2.4 mg）。Fr. 7（2 g）经过色谱硅胶柱色谱（石油醚/水系统，40%～100%，体积分数）梯度洗脱后，采用硅胶柱色谱以石油醚-乙酸乙酯（4：1～2：1）梯度洗脱和 Sephadex LH-20 色谱（氯仿：甲醇＝1：1）分离得到化合物 7（1.6 mg）。

1.2.3 生物活性测定

(1) 乙酰胆碱酯酶抑制活性

化合物均用 DMSO 进行溶解，制成待测样品（50 μg·mL⁻¹）。取 110 μL 磷酸缓冲液（pH = 8.0），10 μL 待测样品和 40 μL 乙酰胆碱酯酶（0.02 μg·mL⁻¹）于 96 孔板中，在 30 ℃下温育 20 min 后加入 DTNB（2.48 g·L⁻¹）和碘化硫代丁酰胆碱（1.81 g·L⁻¹）等体积混合液 40 μL，30 min 后于 405 nm 检测波长大于酶标仪进行检测。阳性对照为他克林（反应终浓度为 0.33 μmol/L），阴性对照为 DMSO（终浓度为 0.1%），实验重复 3 次。计算化合物对 AchE 的抑制率 [(E-S)/E]×100%，E 为阴性对照平均吸光值，S 为待测样品平均吸光值。

(2) α-糖苷醇酶抑制活性

化合物均用 DMSO 进行溶解，制成待测样品（5 μg·mL⁻¹）。取 0.1 mol/L 的磷酸盐缓冲液（pH = 6.8）70 μL 于 96 孔板中，再分别加入 10 μL 待测样品和 20 μL 2 U/mL 的 α-糖苷醇酶溶液，在 37 ℃下温育 15 min 后加入 10 μmol/L 的 PNPG 溶液 20 μL。在 37 ℃下反应 15 min 后加入 80 μL 0.2 mol/L 的 Na₂CO₃ 终止液终止反应，于 400 nm 处酶标仪进行检测。阳性对照为阿波卡波糖（反应终浓度为 0.25 mg/mL），阴性对照为 DMSO（终浓度为 0.5%），实验重复 3 次。计算化合物对 α-糖苷醇酶的抑制率 [(E-S)/E]×100%，E 为阴性对照平均吸光值，S 为待测样品平均吸光值。

2 结果与讨论

2.1 化合物结构鉴定

从该真菌中一共分离了 9 个化合物。根据 H, C-NMR 和 MS 数据鉴定了化合物 1～9 的结构（见图 1）。

...
化合物 1: 黄色油状物质，ESI-MS 给出分子量为 284（m/z: 307 [M + Na]⁺），结合
¹H-NMR, ¹³C-NMR 和 DEPT 谱信息确定分子式为 C₁₆H₁₆O₄ 与饱和度为 5。¹H-NMR (CD₃OD,
500 MHz) δH: 5.10 (1H, s, H-4), 3.78 (3H, s, H-12), 2.41 (1H, d, J = 7.0 Hz, H-11), 1.94 (3H,
J = 7.5 Hz, H-10)。¹³C-NMR (CD₃OD, 125 MHz) δC: 202.7 (C-1), 194.2 (C-5), 177.0 (C-7),
176.9 (C-3), 100.6 (C-4), 83.3 (C-6), 74.1 (C-2), 57.7 (C-12), 41.4 (C-8), 27.9 (C-9), 24.0 (C-13),
22.2 (C-14), 16.8 (C-11), 11.7 (C-10)。以上数据与文献[13]报道基本一致，故鉴定化合物
为 5-(乙酰氧基甲基)呋喃-3-酸。

化合物 2: 白色无定型粉末，ESI-MS 给出分子量为 184（m/z: 207 [M + Na]⁺），结合
¹H-NMR, ¹³C-NMR 和 DEPT 谱信息确定分子式为 C₁₆H₁₆O₄ 与饱和度为 5。¹H-NMR (CD₃OD,
500 MHz) δH: 8.00 (1H, s, H-2), 6.50 (1H, s, H-4), 4.99 (2H, s, H-7), 2.15 (3H, s, H-9)。
¹³C-NMR (CD₃OD, 125 MHz) δC: 176.5 (C-6), 171.6 (C-8), 164.5 (C-5), 147.8 (C-3), 141.4 (C-2),
113.0 (C-4), 62.5 (C-7), 20.4 (C-9)。以上数据与文献[14]报道基本一致，故鉴定化合物
为 5-(乙酰氧基甲基)呋喃-3-酸。

化合物 3: 白色块状结晶，ESI-MS 给出分子量为 182（m/z: 205 [M + Na]⁺），结合
¹H-NMR, ¹³C-NMR 和 DEPT 谱信息确定分子式为 C₁₆H₁₆O₄ 与饱和度为 4。¹H-NMR (CD₃OD, 500 MHz) δH:
6.03 (1H, s, H-5), 2.44 (1H, dd, J = 7.0, 7.0 Hz, H-7), 1.94 (3H, s, H-11), 1.68 (2H, m,
H-8), 1.51 (1H, m, H-8), 1.18 (3H, d, J = 7.0 Hz, H-10), 0.86 (3H, t, J = 7.5 Hz, H-9)。
¹³C-NMR (CD₃OD, 125 MHz) δC: 167.8 (C-4), 167.2 (C-6), 165.8 (C-2), 99.4 (C-5), 98.7 (C-3),
39.8 (C-7), 27.5 (C-8), 17.9 (C-10), 11.7 (C-9), 8.3 (C-11)。以上数据与文献[15]报道基本一致，故鉴定化合物
为 phomapyrone C。

化合物 4: 黄色针状结晶，ESI-MS 给出分子量为 150（m/z: 173 [M + Na]⁺），结合
¹H-NMR, ¹³C-NMR 和 DEPT 谱信息确定分子式为 C₁₆H₁₆O₄ 与饱和度为 6。¹H-NMR (CD₃OD, 500 MHz)
δH: 7.40 (1H, t, J = 7.7 Hz, H-6), 7.33 (1H, d, J = 7.7 Hz, H-7), 7.09 (1H, d, J = 7.7 Hz,
H-5), 5.30 (2H, s, H-3)。¹³C-NMR (CD₃OD,
125 MHz) δc: 173.8 (C-1), 153.8 (C-4), 134.8 (C-3a), 131.8 (C-6), 128.2 (C-7a), 121.0 (C-7), 116.9 (C-5), 69.7 (C-3). 上述数据与文献[16]报道基本一致，故鉴定化合物为 4-羟基异苯并呋喃-1(3H)-酮。

化合物 5: 淡黄色无定型粉末，ESI-MS 给出分子量为 382 (m/z, 405 [M + Na]+)，结合 1H-NMR，13C-NMR 和 DEPT 谱信息确定分子式为 C25 H38 N2 O1，不饱和度为 11，1H-NMR (CD2OD, 500 MHz) δH: 7.40 (2H, dd, J = 7.2, 1.8 Hz, H-2, 6), 7.36 (2H, dd, J = 7.2, 1.8 Hz, H-3, 5), 7.27 (1H, dt, J = 7.2, 1.8 Hz, H-4), 7.18 (1H, s, H-7), 5.85 (1H, qd, J = 15.8, 6.4 Hz, H-22), 5.43 (1H, dd, J = 15.8, 2.9 Hz, H-18a), 5.33, 5.21 (2H, m, H-16a, H-16b), 1.77 (1H, m, H-12), 1.77 (1H, m, H-19), 1.75 (3H, d, J = 7.6 Hz, H-25), 1.67 (1H, m, H-15), 1.65 (1H, m, H-18b), 1.55 (1H, m, H-17), 1.29 (1H, m, H-16b), 0.96 (3H, d, J = 6.6 Hz, H-22), 15C-NMR (CD2OD, 125 MHz) δc: 165.4 (C-2), 162.4 (C-9), 135.7 (C-1), 132.6 (C-7), 132.0 (C-24), 130.8 (C-23), 130.3 (C-2, 6), 129.1 (C-3, 5), 128.2 (C-4), 117.2 (C-8), 112.7 (C-11), 79.5 (C-20), 38.6 (C-14), 37.4 (C-19), 37.2 (C-15), 36.5 (C-16), 27.8 (C-18), 21.8 (C-17), 21.0 (C-22), 17.9 (C-25). 上述数据与文献[17]报道基本一致，故鉴定化合物为 penicillinivinacine.

化合物 6: 淡黄色无定型粉末，ESI-MS 给出分子量为 428 (m/z, 451 [M + Na]+)，结合 1H-NMR，13C-NMR 和 DEPT 谱信息确定分子式为 C28 H34 O2，不饱和度为 7，1H-NMR (CD2OD, 500 MHz) δH: 6.50 (1H, d, J = 8.4 Hz, H-7), 6.24 (1H, d, J = 8.4 Hz, H-6), 5.22 (1H, dd, J = 15.3, 7.4 Hz, H-23), 5.13 (1H, dd, J = 15.3, 3.8 Hz, H-22), 3.97 (1H, m, H-3), 0.99 (3H, d, J = 6.8 Hz, H-21), 0.90 (3H, d, J = 6.8 Hz, H-28), 0.88 (3H, s, H-19), 0.83 (3H, d, J = 6.9 Hz, H-27), 0.82 (3H, s, H-18), 0.81 (3H, d, J = 7.0 Hz, H-26), 13C-NMR (CD2OD, 125 MHz) δc: 135.6 (C-6), 135.3 (C-22), 132.4 (C-23), 130.9 (C-7), 82.3 (C-5), 79.6 (C-8), 66.6 (C-3), 56.3 (C-17), 51.8 (C-14), 51.2 (C-9), 44.7 (C-13), 42.9 (C-24), 39.9 (C-20), 39.5 (C-12), 37.1 (C-4), 37.1 (C-10), 34.8 (C-1), 33.0 (C-25), 30.3 (C-2), 28.8 (C-16), 23.5 (C-11), 21.0 (C-21), 20.8 (C-15), 20.1 (C-27), 19.8 (C-26), 18.3 (C-19), 17.7 (C-28), 13.0 (C-18). 上述数据与文献[18]报道基本一致，故鉴定化合物为 22(E)-5a, 8a-epidioxygenosta -6, 22-dien-3β-ol.

化合物 7: 淡黄色无定型粉末，ESI-MS 给出分子量为 454 (m/z, 477 [M + Na]+)，结合 1H-NMR，13C-NMR 和 DEPT 谱信息确定分子式为 C26 H36 O2，不饱和度为 8，1H-NMR (CD2OD, 500 MHz) δH: 8.19 (1H, s, H-3), 8.06 (1H, s, H-12), 8.05 (1H, s, H-24), 7.94 (1H, dd, J = 9.7, 6.3 Hz, H-1), 7.75 (3H, s, H-27), 1.23 (3H, s, H-19), 1.04 (3H, d, J = 8.0 Hz, H-21), 0.99 (3H, s, H-29), 0.96 (3H, s, H-28), 0.90 (3H, s, H-30), 0.74 (3H, s, H-18), 13C-NMR (CD2OD, 125 MHz) δc: 200.7 (C-7), 195.8 (C-26), 167.3 (C-9), 156.2 (C-24), 138.9 (C-25), 138.4 (C-8), 77.1 (C-3), 50.2 (C-5), 48.9 (C-17), 48.2 (C-14), 44.8 (C-13), 39.8 (C-10), 38.6 (C-4), 36.2 (C-6), 36.1 (C-20), 34.5 (C-22), 34.4 (C-1), 31.8 (C-15), 29.9 (C-12), 28.4 (C-16), 26.7 (C-2), 26.5 (C-29), 25.6 (C-23), 23.9 (C-28), 23.4 (C-11), 17.6 (C-21), 17.2 (C-19), 14.9 (C-18), 14.5 (C-30), 7.7 (C-27). 上述数据与文献[19]报道基本一致，故鉴定化合物为 lucidial.

化合物 8: 淡黄色块状结晶，ESI-MS 给出分子量为 424 (m/z, 447 [M + Na]+)，结合 1H-NMR，13C-NMR 和 DEPT 谱信息确定分子式为 C29 H38 O2，不饱和度为 9，1H-NMR (CD2OD, 500 MHz) δH: 6.36 (1H, s, H-4), 5.29 (1H, dd, J = 15.1, 6.8 Hz, H-23), 5.25 (1H, dd, J = 15.1, 6.8 Hz, H-22), 1.26 (3H, s, H-19), 1.09 (3H, d, J = 6.8 Hz, H-21), 0.98 (3H, s, H-18), 0.91 (3H, d, J = 6.8 Hz, H-28), 0.84 (3H, d, J = 6.8 Hz, H-27), 0.81 (3H, d, J = 6.8 Hz, H-26), 13C-NMR (CD2OD, 125 MHz) δc: 216.2 (C-14), 200.9 (C-6), 200.3 (C-3), 157.9 (C-5), 134.6 (C-23), 132.9 (C-22), 125.1 (C-4), 62.7 (C-8), 54.3
化合物 9：无色油状，ESI-MS 给出分子量为 390（m/z；413 [M+Na]+），结合 H-NMR、

13C-NMR 和 DEPT 谱信息确定分子式为 C_{68}H_{90}O_{19}，不饱和度为 6。H-NMR（CDCl_{3}，500 MHz）δH：

7.72（2H，dd，J=5.6 Hz，H-3'），5.6 Hz，H-3'），4.24（4H，dd，J=2.8 Hz，5.5 Hz，H-6'），1.64（2H，m，H-7'），1.26-1.45

（16H，m，H-8'，9'，10'，12'），0.95（6H，d，J=7.2 Hz，H-11'），0.92（6H，d，J=8.0 Hz，H-13/15'）， 13C-NMR（CDCl_{3}，125 MHz）

δC: 169.4（4-4'），133.5（C-1/1'），132.4（C-3/3'），129.9（C-2/2'），69.1（6/6'），40.2（7/7'），

31.6（C-8/8'），30.2（C-9/9'），25.0（C-10/10'），24.0（C-12/12'），14.4（C-11/11'），11.4（C-13/13'）。以上数据与文献报道一致，故鉴定化合物为 bis-(2-methylheptyl)-phthalate。

2.2 化合物生物活性评价

对分离得到的 9 个化合物进行乙酰胆碱酯酶和 α 糖苷酶抑制活性评价，结果如表 1 所示。化合物 5、6、7 和 9 具有较弱的乙酰胆碱酯酶抑制活性，在 50 µg/mL 浓度下，对乙酰胆碱酯酶的抑制率分别为 35.75%、15.58%、13.80% 和 17.76%；化合物 5 具有强于阳性药阿卡波糖的 α 糖苷酶抑制活性，IC_{50} 是 81.6 µmol/L，而 8 和 9 则具有与阳性药相当的 α 糖苷酶抑制活性，IC_{50} 分别是 305.2 µmol/L 和 684.3 µmol/L。（阳性药阿卡波糖的 IC_{50} 为 546.2 µmol/L）。

| 表 1 化合物 1～9 的乙酰胆碱酯酶和 α 糖苷酶抑制活性 |
|---|---|---|
| 样品编号 | 乙酰胆碱酯酶抑制率（50 µg/mL）/% | α 糖苷酶抑制活性（IC_{50}）/µmol·L^{-1} |
| 1 | <10 | >1000 |
| 2 | <10 | >1000 |
| 3 | <10 | >1000 |
| 4 | 10.17 | >1000 |
| 5 | 35.75 | 81.6 |
| 6 | 15.58 | >1000 |
| 7 | 13.80 | >1000 |
| 8 | 10.25 | 305.2 |
| 9 | 17.76 | 684.3 |
| 他克林（66 µg/L） | 75.95 | |
| 阿卡波糖 | 546.2 | |

3 结论

海洋曲霉属真菌是发现新化合物的重要来源，研究其次级代谢产物对于活性天然产物的发现具有重要意义。本研究从海洋真菌 Aspergillus sp. SCS-KF03 中首次分离得到 9 个化合物（1～9）。已有研究发现化合物 5 表现出一定的抗 MDA-MB-231 人乳腺癌细胞活性[17]，化合物 7 对 Lewis 型肺癌细胞和 T-47D 细胞以及恶性毒瘤 S180 细胞具有一定的细胞毒性[19]，化合物 8 表现出对鼠 P388 白血病细胞系一定的生长抑制作用[20]。本研究对分离得到的 9 个化合物首次进行乙酰胆碱酯酶和 α 糖苷酶的抑制活性评价，发现化合物 5、6、7 和 9 具有较弱的乙酰胆碱酯酶抑制的活性，化合物 5 具有强于阳性药阿卡波糖的 α 糖苷酶抑制活性，8 和 9 的 α 糖苷酶抑制活性与阳性药相当。本研究进一步丰富了曲霉属真菌来源
天然产物的结构多样性，发掘了部分化合物新的生物活性，为进一步研究海洋曲霉属真菌的化学结构和生物活性的多样性提供依据，研究结果也为海洋新天然产物以及药源分子的发现奠定了基础。

参考文献
static constituents of a sponge-derived Gymnascella dank-