基于荧光共振能量转移技术的 STAT3 二聚化抑制剂筛选模型的建立△

陈俊生，赵麟，李静，戚欣

（中国海洋大学海洋药物研究所，青岛 266003）

摘 要: 目的 构建信号传导与转录激活因子3(signal transducer and activator of transcription factor 3, STAT3)二聚化抑制剂筛选模型，为STAT3 抑制剂筛选提供实验方法。方法 分别构建pECFP-N1-STAT3和pEYFP-N1-STAT3的荧光报告载体，利用脂质体转染技术将二者共转入HEK-293T细胞，利用ECFP和EYFP两种荧光蛋白之间能量共振转移，检测磷酸化STAT3 分子的二聚化水平，并检测Stattic对二聚化的影 响。结果 成功构建了pECFP-N1-STAT3和pEYFP-N1-STAT3的荧光报告载体。将2种荧光报告载体共转 染HEK-293T细胞后，Western Blot检测结果显示STAT3以及p-STAT3的表达水平明显增加。以458nm波长激发ECFP，其发射波长可激发EYFP。加入STAT3二聚化抑制剂Stattic后，荧光强度降低，且呈现一定的剂量依赖性。结论 基于荧光共振能量转移技术的STAT3 二聚化抑制剂筛选模型构建成功。

关键词: 信号传导与转录激活因子3(STAT3); 二聚化; 荧光共振能量转移(FRET); Stattic

Establishment of the screening model of the inhibitor for dimerization of STAT3 based on fluorescence resonance energy transfer technology

CHEN Jun-sheng, ZHAO Lin, LI Jing, QI Xin*

(Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory of Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China)

Abstract: Objective To establish a screening model of the inhibitor for dimerization of STAT3 and to provide a novel experimental method for screening of the inhibitor of STAT3. Methods Two fluorescent reporter vectors, pECFP-N1-STAT3 and pEYFP-N1-STAT3, were established by molecular biological technique. Liposome-mediated transfection technique was used to transfer gene into HEK-293T cells. The mutual function between ECFP and EYFP was confirmed using the energy. The effect of Stattic on dimerization of STAT3 proteins was examined in this model. Resonance transfer technology by which the dimerization level of STAT3 proteins was measured. Results The fluorescent reporter vectors containing the STAT3 gene were successfully established. Western Blotting showed that the expression levels of STAT3 and phosphorylated STAT3 proteins were significantly increased after transfection. The ECFP was excited at a wavelength of 458 nm and its emission wavelength could excite EYFP. The addition of Stattic (the inhibitor for dimerization of STAT3) induced the reduction of fluorescence intensity

*△基金项目: 青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2015ASKJ02)资助
作者简介: 陈俊生（1993-），男，硕士研究生。E-mail: johnson655@yeah.net
*通讯作者: 戚欣，女，高级实验师，主要从事抗肿瘤药物开发及机制研究。E-mail: qxh110@163.com
收稿日期: 2017-07-21
in dose-dependent manner, suggesting that Stattic inhibited the dimerization of STAT3 in this model. **Conclusion** The screening model of STAT3 dimerization inhibitor was established successfully based on FRET technology. **Key words:** signal transducers and activators of transcription 3 (STAT3); dimerization; fluorescence resonance energy transfer (FRET); Stattic

海洋特殊的生态环境，产生大量具有多种生物学活性、结构多样的海洋天然产物，是发现重要先导化合物的源泉。而如何快速有效的对海洋来源的天然产物进行活性筛选与靶点确定，是目前限制海洋天然产物研究的1个主要因素。

STAT3 是信号转导与转录活化蛋白 (STATs) 家族的重要成员，是1种存在于胞浆并在激活后能够转入核内与 DNA 结合的蛋白家族，具有信号转导和转录调控双重功能。**STAT3**在多种肿瘤组织与细胞系中异常表达，并与肿瘤的增殖分化、细胞凋亡以及耐药密切相关。**STAT3**已经成为抗肿瘤新药筛选的重要靶标之一，但目前尚未有靶向 STAT3 的药物上市。很多化合物，例如通过高通量筛选得到的小分子化合物 Static，虽然具有良好的生物活性，但存在选择性差、毒副作用大、生物利用度低等问题，因此仍有必要寻找新的高效低毒的活性化合物。

荧光共振能量转移 (fluorescence resonance energy transfer, FRET) 技术是1种研究蛋白质与蛋白质之间相互作用的新技术。FRET 具有敏锐、检测快捷、无生物毒性等特点。本研究将利用增强型 CFP(供体分子) 和增强型 YFP(受体分子)2 种荧光蛋白分别标记 STAT3 蛋白，利用 STAT3 蛋白易形成二聚化特点，检测供体—受体荧光分子 (ECFP-EYFP) 之间能量转移，从而建立1个基于 STAT3 二聚化抑制剂的细胞筛选模型，为从海洋天然产物中寻找新的靶向 STAT3 抑制剂提供实验手段。

1 实验方法
1.1 细胞株及载体质粒

人胚胎肾上皮细胞 HEK-293T 细胞，购自中科院上海细胞库，本实验室传代冻存，荧光报告载体 (pECFP-N1 和 pEYFP-N1) 购于长沙优宝生物；Stat3-C Flag pRc/CMV 质粒由德克萨斯大学 Mien-Chie Hung 教授馈赠；DH5a 大肠杆菌感受态为本实验室制备，保存。

1.2 试剂

Xho I、BamH I 限制性内切酶 (NEB 公司)，Ex Taq 酶、T4 DNA 连接酶 (日本 Takara 公司)，DMEM 培养基 (吉诺生物医药技术有限公司)，胎牛血清 (Gibco 公司)，Gel Extraction Kit 试剂盒，Plasmid Mini Kit 核酸提取盒 (美国 Omega 公司)，ECL 发光试剂，Lipofectamine 3000（美国 Thermo Fisher 公司），化合物 Static (批号 S129623，上海阿拉丁生化科技股份有限公司)，其他试剂均为市售分析纯。

1.3 仪器

CO2 细胞培养箱（美国 Thermo Fisher Scientific 公司），激光扫描共聚焦显微镜（德国 Zeiss 公司），超净工作台（美国 Thermo Fisher Scientific 公司），台式高速冷冻离心机（德国 Heraeus 公司），高压蒸汽灭菌锅（日本 Sanyo 公司），DNA 电泳、Western Blot 电泳装置（美国 Bio-Rad 公司），PCR 自动系列分析仪（美国 Applied Biosystems 公司），化学发光可见光成像系统（美国 Protein Simple 公司），Cytation5 Image Reader 仪器，Epoch 2 酶标仪（美国 BioTek 公司）。

2 实验方法

2.1 STAT3 荧光报告载体的构建

根据 GeneBank 提供的 STAT3 序列，(Gene ID: 458705)，设计引物：Forward: 5' - CCGCTCGAGATGGCTACTGAAACCAGCT-3'，Reverse: 5'-CGCGATCCAGCTGAGGTCAGCAC-3'，并在目的片段的上游和下游引入 Xho I 和 BamH I 限制性内切酶酶切位点，以 Stat3-C Flag pRc/CMV 质粒作为模板，扩增得到目的片段 STAT3。

对 STAT3 基因 PCR 扩增胶回收产物和载体质粒 pECFP-N1、pEYFP-N1 分别进行双酶切，酶
切条件为 37 ℃, 恒温水浴反应 4 h。使用琼脂糖凝胶电泳对酶切产物进行检测, 并做胶回收。检测载体和片段胶回收产物浓度, 按摩察尔比 1 : 4 并加入 T4 DNA 连接酶与 buffer, 16 ℃过夜, 将片段连接入荧光报告载体, 获得 pECFP-N1-STAT3 和 pEYFP-N1-STAT3 载体质粒。

将连接产物转化进入大肠杆菌, 涂于 LB 固体培养基上生长过夜。对单克隆菌液进行菌落 PCR 鉴定, 将阳性菌落送测序公司测序。

2.2 质粒转染 HEK-293T 细胞

HEK-293T 细胞 1.5×10^6/孔铺于 6 孔板中, 用含 10% FBS 的 DMEM 培养基置 37 ℃, 5% CO₂ 培养箱中培养至细胞融合度为 60%~80% 时, 使用 Lipoo3000 法进行转染。具体实验步骤如下, 在 1 个 EP 管中加入 250 μL 无血清 DMEM 培养基, P3000 3.25 μL, 质粒 2.5 μg, 混合均匀; 另 1 个 EP 管中, 加入 250 μL 无血清 DMEM 培养基, Lipo3000 3.25 μL。两管液体混合, 并轻缓吹匀, 室温静置 15 min, 均匀加入到 6 孔板中, 空白对照组补加 250 μL 无血清 DMEM 培养基。培养 24 h 后换液, 用含 10% FBS 的 DMEM 培养基继续培养。

2.3 488 nm 波长激发检测转染后 HEK-293T 细胞荧光情况

将 2.2 中转染 48 h 的细胞, 采用 Cytation 5 仪器, 利用 488 nm 波长的激发光, 观察不同转染组中细胞荧光蛋白的表达情况, 确定转染效率, 同时观察荧光在细胞中的位置。

2.4 Western Blotting 检测 HEK-293T 细胞中 STAT3 的表达

将质粒转染并培养 72 h 后的 HEK-293T 细胞, PBS 洗 2 次, 每孔加入 100~200 μL 裂解液, 冰上裂解 40 min, 收集样品于沸水中煮沸 15 min, 于 -20 ℃ 保存。取 8% 的 SDS-PAGE 胶, 上样电泳, 将蛋白转移到 NC 膜上, 使用 5% 的脱脂牛奶室温封闭 2 h, 一抗 4 ℃ 孵育过夜, 使用 TBST 洗 4 次, 每次 5 min, 二抗室温孵育 1 h, TBST 洗 4 次, 每次 5 min, 显影。检测细胞中 STAT3 以及磷酸化 STAT3 蛋白的表达情况。

2.5 FRET 方法检测 STAT3 二聚化

将共转染 pECFP-N1-STAT3 和 pEYFP-N1-STAT3 的 HEK-293T 细胞 1×10^4/孔种于 384 孔板, 37 ℃ 恒温培养箱继续培养 24 h 后, 向孔中加入不同浓度的 Stattic (20, 0.0, 10, 0.0, 5, 0.0, 2.5 和 1.25 μmol・L⁻¹), 作用 6 h 后, 利用 FRET 方法检测。设置激发波长为 458 nm, 发射波长为 530 nm 进行检测, 每组中分别选取 5 个区域进行荧光强度统计, 取平均值, 并根据荧光强度来计算 Stattic 的抑制率。

计算公式: 抑制率 = (溶剂对照组平均荧光强度 - 给药组平均荧光强度) / 溶剂对照组平均荧光强度 × 100%

2.6 SRB 法检测细胞生长活性

将共转 pECFP-N1-STAT3 与 pEYFP-N1-STAT3 质粒 48 h 后的 HEK-293T 细胞 6×10^3/孔种于 96 孔板, 37 ℃ 恒温培养箱继续培养 24 h 后, 向孔中加入不同浓度的 Stattic (40, 20, 0.0, 10, 0.0, 5, 0.0, 2.5, 50 和 1.25 μmol・L⁻¹), 作用 24 h 后, 使用 SRB 法检测不同浓度的 Stattic 对细胞的细胞毒作用。

3 结果

3.1 成功构建荧光蛋白-STAT3 融合质粒

PCR 扩增 STAT3 片段, 并进行双酶切, 酶切结果如图 1 所示, 在约 2 300 bp 处有单一条带, STAT3 条带; 图 2 中, 在约 4 700 bp 处有单一条带, 与未酶切的环状载体质粒有明显区别。

以连接、转化后的菌液为模板进行菌液 PCR, 产物电泳结果如图 3 所示, 第 2、3、6、12、14 泳道在约 2 300 bp 左右有一条带, 可扩增得到 STAT3 片段, 说明 STAT3 已经连接进入载体质粒。并将菌液送测序公司进行测序, 结果显示 STAT3 片段与载体成功连接, 序列正确, 成功获得 pECFP-N1-STAT3 和 pEYFP-N1-STAT3 质粒。
3.2 构建的 HEK-293T 细胞高表达荧光蛋白

所有转染组别的细胞进行成像，结果如图 4 所示，所有组中的细胞都表达了绿色荧光，转染效率较高。同时对 pECFP-N1 和 pEYFP-N1 质粒共转染的 HEK-293T 细胞组进行分析，如图 5 所示，荧光分布与细胞形态一致，提示荧光蛋白多存在胞浆中；而在 pECFP-N1-STAT3 和 pEYFP-N1-STAT3 质粒共转染的 HEK-293T 细胞中，荧光呈现较小的圆点状形状，提示荧光蛋白可能入核（见图 6）。
图 4 488 nm 波长检测转染后 HEK-293T 细胞荧光情况
Fig. 4 Fluorescence of HEK-293T cells activated at 488 nm

图 5 488 nm 波长检测 pECFP-N1 和 pEYFP-N1 质粒转染 HEK-293T 荧光情况
Fig. 5 Fluorescence of HEK-293T cells transfected by pECFP-N1 and pEYFP-N1 plasmids activated at 488 nm
3.3 转染后 HEK-293T 细胞中 STAT3 以及 p-STAT3 明显上调

对转染后 HEK-293T 细胞中的 STAT3 以及 p-STAT3 进行检测，结果如图 7 所示，与空白对照组相比，在含 STAT3 片段的质粒单转或者双质粒共转的 HEK-293T 细胞中，STAT3 和 p-STAT3 表达明显上调。而在不含 STAT3 片段的质粒单转或者共转的 HEK-293T 细胞中，STAT3 和 p-STAT3 蛋白表达量与空白对照组一致，表达较少。

3.4 Stattic 可以有效的抑制 STAT3 的二聚化作用

首先对所有转染组中荧光情况进行了 FRET 检测，结果如图 8 所示，pECFP-N1-STAT3 和 pEYFP-N1-STAT3 质粒共转染组于 530 nm 处产生了明显的荧光，而其他所有组别中的荧光表现极弱，表明 pECFP-N1-STAT3 和 pEYFP-N1-STAT3 质粒共转染组细胞中 STAT3 发生了二聚化。FRET 方法可以特异性地检测到这种二聚化。

pECFP-N1-STAT3 和 pEYFP-N1-STAT3 共转染组细胞加入化合物 Stattic，作用 6 h 后，每组分别选取 5 处不同的区域，对区域内平均荧光强度值进行检测并统计分析，结果见表 1，可以看出 Stattic 对 STAT3 的二聚化作用具有抑制作用，且呈现出剂量依赖关系，IC\textsubscript{50} 值为 9.81 μmol·L-1。
图 8 Cytation 5 显微镜观察不同组别细胞的荧光情况
Fig. 8 Fluorescence of cells in different groups under Cytation 5 Microscope

表 1 平均荧光强度统计分析
Table 1 Statistical analysis of average intensity of fluorescence

<table>
<thead>
<tr>
<th>组别</th>
<th>浓度/μmol·L⁻¹</th>
<th>荧光强度/AU</th>
<th>均值/AU</th>
<th>抑制率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO组</td>
<td>—</td>
<td>175</td>
<td>190</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>20,00</td>
<td>56</td>
<td>70</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>10,00</td>
<td>79</td>
<td>71</td>
<td>69</td>
</tr>
<tr>
<td>Static组</td>
<td>5.00</td>
<td>121</td>
<td>132</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
<td>145</td>
<td>156</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>170</td>
<td>169</td>
<td>170</td>
</tr>
</tbody>
</table>

注：与 DMSO 组相比，**P<0.01，*P<0.05。
3.5 Stattic 可以明显抑制双转染细胞的生长活性

对 pECFP-N1-STAT3 和 pEYFP-N1-STAT3 质粒共转染组细胞，加入化合物 Stattic 作用 24 h，SRB 检测结果如表 2 所示，可以看出，Stattic 可以明显抑制 pECFP-N1-STAT3 和 pEYFP-N1-STAT3 质粒共转的 HEK-293T 细胞的生长活性，IC50 为 4.96 μmol·L⁻¹。

表 2 Stattic 对 pECFP-N1-STAT3 和 pEYFP-N1-STAT3 共转的 HEK-293T 细胞的生长活性的影响

<table>
<thead>
<tr>
<th>组别</th>
<th>浓度/μmol·L⁻¹</th>
<th>吸光度</th>
<th>抑制率/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>空白组</td>
<td>—</td>
<td>1.26±0.01</td>
<td>—</td>
</tr>
<tr>
<td>DMSO 组</td>
<td>—</td>
<td>1.26±0.01</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>40.00</td>
<td>0.05±0.01</td>
<td>95.74</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>0.08±0.02</td>
<td>93.82</td>
</tr>
<tr>
<td></td>
<td>10.00</td>
<td>0.08±0.02</td>
<td>93.60</td>
</tr>
<tr>
<td>Stattic 组</td>
<td>5.00</td>
<td>0.55±0.03</td>
<td>56.60</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
<td>1.09±0.03</td>
<td>13.68</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>1.20±0.01</td>
<td>5.25</td>
</tr>
</tbody>
</table>

4 讨论

本论文旨在使用 FRET 技术构建 1 种细胞内的 STAT3 抑制剂筛选、评价模型。在 FRET 技术中，当 1 个荧光分子（供体分子）的发射光谱与另 1 个荧光分子（受体分子）的激发光谱有部分重叠并且距离足够近时（常小于 10 nm），可观察到供体分子自身的荧光强度减弱，而受体分子发出荧光。[7]。借此可以研究细胞内分子间的相互作用，该技术广泛应用于生物医药学研究领域。该技术具有分析速度快、检测灵敏度高、选择性好等优点[8]。在本研究中，选择 ECFP 作为供体分子，EYFP 作为受体分子，利用 2 种荧光蛋白之间的能量共振转移情况，建立 STAT3 二聚化抑制剂的新型筛选模型。

本研究成功构建 pECFP-N1-STAT3 和 pEYFP-N1-STAT3 质粒，并用质粒转染 HEK-293T 细胞。从 Western blot 结果看出，STAT3 和 pSTAT3 均有 2 条带，这是因为同时检测到了荧光蛋白标记的分子量较大的 STAT3 融合蛋白和细胞自身 STAT3 蛋白。文献报告，STAT3 在细胞的信息传递作用中起到了重要作用[9]。一些肿瘤生长相关的细胞因子与细胞表面的受体结合之后，受体的 gp130 亚基形成二聚体，与之相连的 JAK 酶磷酸化，使得 STAT3 分子 C 端 705 位酪氨酸残基发生磷酸化，进而分子间的 SH2 结构域可和酪氨酸磷酸化位点相互作用，引起 STAT3 发生二聚化作用，然后 STAT3 形成的二聚体向细胞核内转移，与靶基因特定的位点结合，调节基因的转录活性，影响着细胞的生长、分化和生存[10]。从而可以观察到转染后的细胞中 STAT3 的表达明显上调，同时 705 位磷酸化的 STAT3 也可以明显增加。

ECFP 和 EYFP 荧光蛋白均是 GFP 蛋白中部分氨基酸突变产生的产物，仍可以被 488 nm 波长激发，据此可以评价细胞转染效率。从结果看出，所有细胞均呈现明亮的绿色荧光，表明转染效率较高。如果 STAT3 在胞浆中，整个细胞会呈现出明显的绿色荧光，而 STAT3 二聚化入核，则会显示出较圆荧光分布。从结果看出，转染后的 STAT3 的荧光蛋白多呈现明显的圆状荧光，说明融合蛋白 STAT3 能够在胞内接受信号刺激，发生二聚化作用并进入核内。

为了排除荧光蛋白 ECFP 和 EYFP 自身对 FRET 产生非特异性影响，在本研究中设立多个转染组，并对所有组别进行了 FRET 检测，结果显示 ECFP 与 EYFP 自身不会发生荧光能量共振转移，对 FRET 检测无影响；只有当 STAT3 发生二聚化作用时，2 种荧光蛋白相互靠近，可以检测到明显
的能量共振转移现象。使用Statc对模型进行验证，从结果可以看出，Statc抑制STAT3二聚化作用的IC₅₀为9.81 µmol·L⁻¹。Statc对HEK-293T细胞毒IC₅₀为4.96 µmol·L⁻¹，两者基本一致，说明Statc抑制了STAT3的二聚化作用，从而对细胞产生了细胞毒作用。以上结果均证实，该模型可以用于STAT3二聚化抑制剂的筛选。

本论文利用荧光共振能量转移技术成功建立
了细胞水平的STAT3抑制剂筛选模型，与以往分子水平筛选模型相比，能够在细胞内反映化合物对STAT3二聚化的影响，集分子靶向与功能评价于一体。而且可以在微孔中通过荧光快速扫描获取数据，为将来从海洋天然产物发现靶向STAT3的新型先导化合物提供1个高通量的筛选模型。

参考文献