南极磷虾粉对小鼠骨质疏松性骨折愈合的影响△*

于朋1, 王菲1, 刘云涛2, 詹麒平1, 尹利昂1, 王静风1*, 薛长湖1

(1. 中国海洋大学 食品科学与工程学院, 山东 青岛 266003;
2. 山东东方海洋科技股份有限公司, 山东 烟台 264003)

摘要: 目的 观察南极磷虾粉(Antarctic krill meal, AKM)对小鼠骨质疏松性骨折愈合过程的影响。方法 对10周龄雌性C57BL/6小鼠行双侧卵巢切除术建立骨质疏松模型, 3个月后建立右侧中上1/3处开放性骨折模型。随后随机分为4组, 一般性骨折组(SHAM)、骨质疏松性骨折模型组(OVX)、强性对照组(ALN, 1 mg/kg・BW)、AKM组(800 mg/kg・BW)。于骨折后5、11、24、35 d进行取材, 观察AKM对小鼠骨质疏松化指证(VEGF, BALP)及骨折组织形态学的影响，并探讨AKM促进小鼠骨质疏松性骨折愈合的机制。结果AKM能显著提高血清中VEGF、BALP的水平, 促进软骨基质向软骨基质转化, 加速骨折愈合。AKM能显著促进骨折愈合过程中软骨陷窝内因子(Ang1, PDGF-BB, CD31)、软骨基质形成及降解酶(AGG, MMP-13)、骨形成相关因子(BMP-2, CollⅠ, OCN, TGF-β1)的mRNA表达, 加速软骨基质化。结论AKM能通过促进软骨基质化而加速小鼠骨质疏松性骨折愈合进程。

关键词: 骨折愈合; 南极磷虾粉; 组织形态学; 软骨基质化

Effects of Antarctic krill meal on fracture healing in osteoporotic mice

YU Peng1, WANG Fei1, LIU Yun-tao2, ZHAN Qi-ping1, YIN Li-ang1, WANG Jing-feng1*, XUE Chang-hu1

(1. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
2. Shandong Oriental Ocean Sci-tech Co., Yantai 264003, China)

Abstract; Objective To investigate the effects of Antarctic krill meal on fracture healing in ovariectomy induced osteoporotic mice. Methods The ten-week mice were subjected to bilateral ovariectomy, and subsequently tibia fracture operation after three months to establish an osteoporotic fracture model. All fractured mice were divided into four groups; general fracture group (SHAM), osteoporotic fracture model group (OVX), alendronate positive model group (1 mg/kg・BW) and AKM group (800 mg/kg・BW). Serum biochemical indicators, callus histomorphology and key genes in fracture healing were investigated. Results AKM significantly improved the levels of VEGF and BALP in serum and promoted the transformation of cartilage callus to osseous callus, thereby facilitating fracture healing. Mechanism research revealed that AKM significantly promoted endochondral ossification via increasing the mRNA expression of angiogenesis factor (Ang1, PDGF-BB, CD31), cartilage matrix formation and degrada-

* △基金项目: 国家自然科学基金项目(31371876, 31571771)资助
作者简介: 于朋 (1991-), 男, 硕士研究生。E-mail: 1455645332@qq.com
通讯作者: 王静凤 (1964-), 女, 教授, 博导。E-mail: jfwang@ouc.edu.cn
收稿日期: 2016-09-10
tion Marker (Aggrecan, MMP-13) and bone formation inductors (BMP-2, Col1α1, OCN, TGF-β1).

Conclusion AKM could facilitate fracture healing in osteoporotic mice via promoting endochondral ossification.

Key words: fracture healing; *Antarctic krill* meal; histomorphology; endochondral ossification.

Bone metastasis is a kind of全身性的代谢性骨骼疾病, 表现为患者骨折危险性增加, 以骨质量和骨密度为主要影响因素。骨质疏松性骨折是骨质疏松症最严重的后果, 严重威胁人们的生活质量。近年来, 由于临床上所用抗骨质疏松性药物存在的副作用, 膳食的干预成为治疗骨质疏松性骨折 1 种新的治疗方法。有研究表明, 膳食中钙、磷及维生素等的摄取量会影响血清中骨钙素水平, 从而导致骨折[1]。因此, 寻找 1 种促进骨质疏松性骨折愈合的食品产品至关重要的。

南极磷虾是 1 种富含脂肪及蛋白质的甲壳类浮游动物[2]。和鱼类一样, 磷虾也是 ω-3 不饱和脂肪酸(ω-3 PUFAs)的 1 个良好来源。有研究证明, ω-3 PUFAs 能增加骨形成, 减少骨丢失, 影响青少年时期骨量的峰值[3-7]。除此之外, 从南极磷虾中提取的磷脂酸及其磷酸酰化的磷脂酰胆碱具有提高骨强度, 改善骨质疏松的效果[8-9]。南极磷虾粉 (AKM) 是由新鲜磷虾酶解产生的 1 种蛋白质及极性脂类复合物。这就为 AKM 能影响骨生成, 促进骨质疏松性骨折愈合提供了可能性。

本研究通过双侧去卵巢后对右胫进行开放式骨折建立骨质疏松性骨折小鼠模型, 以 AKM 为受试物, 探讨了 AKM 对小鼠骨质疏松性骨折愈合的促进作用, 为南极磷虾资源的深度开发提供理论依据, 为治疗骨质疏松性骨折症的功能食品开发提供研究基础。

1 材料与方法
1.1 材料
1.1.1 实验原料及动物

南极磷虾粉, 产于挪威的 Emerald 渔业集团公司。生产过程如下: 新鲜的南极磷虾于低温下切碎, 并加入 0.2% 的碱性蛋白酶在 55～60 ℃下酶解, 最后经沉淀分离, 得到不溶性蛋白质和极性脂类浓缩物, 将其干燥制得磷脂/肽复合物粉, 即南极磷虾粉。其中, 水分含量为 3%, 蛋白含量为 47.11%, 脂质含量是 46.3%, 氨为 125 mg/kg。
骨折后，将成模小鼠随机分为4组，分别为一般性骨折组（Sham）、骨质疏松性骨折模型组（O VX）、阳性对照组（AL N, 1 mg/kg • BW）及高磷虾粉组（AKM, 800 mg/kg • BW）。每组20只，Sham组和OVX组小鼠灌胃生理盐水。骨折后第1天开始灌胃，每天1次，灌胃体积为10 mL/kg • BW。于术后5, 11, 24天收集血清用于血清生化标志物的检测。于术后5, 11, 24, 35天收集右侧胫骨骨折处组织形态学观察（n = 4/组）；同时将术后11和24天剩余小鼠骨组织放置于-80 ℃冷冻，用于测定骨折愈合相关基因的表达（n = 4/组）。

1.2.2 血清生化标志物

按照相应试剂盒说明书，测定每个时间点血清中BALP活性及VEGF含量。

1.2.3 组织形态学观察

将截取的右侧胫骨骨折组织，立即置入10%的中性甲醛中，固定24 h，再将其放于10%EDTA-2Na（pH=7.3）脱钙4 ~ 5周，脱钙完毕后，乙醇梯度脱水，常规石蜡包埋，HE染色，于光学显微镜下观察每个时间点的骨折组织学特点。

1.2.4 RT-PCR分析

骨折愈合组织，采用TRIzol法提取总RNA。取1μg总RNA在M-MLV逆转录酶的催化作用下逆转录生成cDNA，在25 μL反应体系中进行qRT-PCR扩增。各反应物用量参照Maxima SYBR Green qRT-PCR Mastermix说明书要求。反应条件为：95 ℃预变性10 min, 95 ℃变性15 s, 60 ℃退火20 s, 72 ℃延伸30 s，共45个循环。所用目的基因引物序列见表1，目的基因mRNA表达量以β-actin mRNA的量作为内参照正。

<table>
<thead>
<tr>
<th>基因</th>
<th>正向引物</th>
<th>反向引物</th>
<th>扩增长度/bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angl</td>
<td>GTCCAGAGAATGCGACCTCAACATCA</td>
<td>GTCACCTCCAAATCCATCTCAAAC</td>
<td>204</td>
</tr>
<tr>
<td>PDGF-BB</td>
<td>TCCACCCAGAGGCGTCTTCTCAG</td>
<td>GTGCCATCATAGGTCCTCCAGTCT</td>
<td>161</td>
</tr>
<tr>
<td>CD81</td>
<td>AACTCTCCTACATCAACAGGTCCAC</td>
<td>CGTTTATACATACCCATTGTCC</td>
<td>166</td>
</tr>
<tr>
<td>Aggreca</td>
<td>TGGCAGTCATTCTCGAGGAGAGATTAT</td>
<td>TGTCAGCAGGATTGTCAGGAGAGTC</td>
<td>253</td>
</tr>
<tr>
<td>MMP-13</td>
<td>CCACAGTGGACAGGGTCCAGGAA</td>
<td>CCACAGTGGACAGGGTCCAGGAA</td>
<td>117</td>
</tr>
<tr>
<td>BMP-2</td>
<td>ATCCACCTCATCTCGGCTCCTCCA</td>
<td>TCTCCTGCTTCTCCCTCCTCCA</td>
<td>113</td>
</tr>
<tr>
<td>Col1α1</td>
<td>GCTCGTTGATTCGCTGGAAACA</td>
<td>CAGACACACAGCCTCAGTCTG</td>
<td>238</td>
</tr>
<tr>
<td>OCN</td>
<td>GCTCGAGTCATCTGACAAGACCTTC</td>
<td>CGGTCCTCAAGGCTACCTGGTCG</td>
<td>177</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>GACCGCAAAACGCGCATTATAGA</td>
<td>AGCCACTCGGACTAAGCTCGA</td>
<td>281</td>
</tr>
<tr>
<td>β-actin</td>
<td>GTCCACCTCCTCGCAGATT</td>
<td>AGCTCAGTAACTGCTCGGACCTG</td>
<td>101</td>
</tr>
</tbody>
</table>

1.3 统计学分析

数据分析采用SPSS 17.0软件进行单因素方差分析，并采用LSD法进行两两比较，P<0.05为差异显著，实验数据用x±s表示。

2 结果

2.1 AKM对骨折愈合血清生化指标的影响

VEGF被称为血管内皮生长因子，是血管发生和血管生成中重要的调控因子[9]。BALP由成骨细胞合成，是反映骨形成的有效指标。结果见表2，OVX组中血清的VEGF及BALP含量在术后的5和11 d较Sham组均显著降低，说明OVX组在骨折愈合早期出现了血管生成和骨生成延迟的现象。经AKM干预后，VEGF水平分别在第5和11天提高了15.3%, 14.1%(P<0.01)，BALP活性分别在第5和11天提高了217.1%(P<0.01)、15.3%。骨折后24 d, Sham、OVX、AKM3组的VEGF水平及BALP活性相当，无显著性差异。表明AKM能在骨折后5和11 d促进VEGF和BALP的分泌，促进血管生成，提高成骨细胞活性。
表 2 AKM 对小鼠骨质疏松性骨折愈合血清中 VEGF 及 BALP 的影响（\(x \pm s, n=8\)）

Table 2 Effects of AKM on indexes of serum VEGF, BALP in osteoporotic fracture mice（\(x \pm s, n=8\)）

<table>
<thead>
<tr>
<th>Group</th>
<th>VEGF/pg・mL(^{-1})</th>
<th>BALP/U・L(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 d</td>
<td>11 d</td>
</tr>
<tr>
<td>Sham</td>
<td>156, 57±3, 4(\ast)</td>
<td>183, 85±3, 67b</td>
</tr>
<tr>
<td>O VX</td>
<td>166, 62±3, 75b</td>
<td>187, 85±3, 67b</td>
</tr>
<tr>
<td>ALN</td>
<td>168, 65±3, 74ah</td>
<td>186, 86±6, 82ah</td>
</tr>
<tr>
<td>AK M</td>
<td>165, 66±3, 75b</td>
<td>187, 85±3, 67b</td>
</tr>
</tbody>
</table>

注：\(\ast P<0.05, \ast\ast P<0.01\)，与假手术组比较；\(b P<0.05, b P<0.01\) 与模型组比较。

Note: \(\ast P<0.05, \ast\ast P<0.01\) vs Sham group; \(b P<0.05, b P<0.01\) vs O V X group.

2.2 AKM 对骨折愈合过程中骨痂组织形态学的影响

骨折后 11 d，主要为软骨痂形成时期。Sham组的软骨细胞大部分已经经过增殖、肥大、成熟，形成大量编织骨；而 OVX 组主要为体积较小的圆形软骨细胞，尚处于增殖阶段。与 OV X 组相比，AKM 组中的软骨细胞成熟肥大明显，局部有部分编织骨的形成。表明 AKM 能促进软骨细胞的成熟肥大，加快软骨痂的形成。

骨折后 24 d，软骨性骨痂正逐渐转化为骨性骨痂。Sham 组已经形成致密的编织骨，并逐渐向板层骨转变，骨痂塑型已经开始；而 OVX 组骨痂内形成的编织骨较少，且粗细不均、松散紊乱，骨痂塑型尚未开始。经 AKM 干预后，骨痂内形成的编织骨较模型组多，且逐渐向板层骨转变，骨痂开始塑型。表明 AKM 可以促进骨性骨痂的形成。

骨折后 35 d，骨痂明显塑型，骨折部形成板层骨。Sham 组骨痂塑型良好，骨折部已经形成较厚的板层骨；OVX 组骨折部虽也形成板层骨，但还未塑型良好，仍在改建中。与 OV X 组相比，AKM 组的骨痂塑型更好。表明 AKM 可以加快骨痂的改建过程（见图 2）。

![图 2 骨折后不同时期的骨痂组织形态学（HE 染色, 20×）](Fig. 2 The callus histomorphology at the different time after surgery (HE stain, 20×))
2.3 AKM 对骨折愈合相关基因表达的影响

Ang1、PDGF-BB[10] 和 CD31[11] 分别是重要的促血管再生因子和血管新生因子。由图 3 可知，在骨折后 11 d 时，OVX 组中 Ang1、PDGF-BB、CD31 mRNA 的表达量较 Sham 组显著降低，AKM 组的 Ang1、PDGF-BB、CD31 mRNA 的表达量较模型组分别升高了 85.6%、170.7%、66.2%。在骨折后 24 d 时，OVX 组中 Ang1 mRNA 的表达量较 Sham 组显著升高（P＜0.05），PDGF-BB 也呈现相似的趋势，但没有显著性差异。在 AKM 干预后，Ang1、PDGF-BB mRNA 的表达量分别降低了 32.1%、46.6%（P＜0.05），而 CD31 的表达量较 OVX 组没有显著变化。表明 AKM 能显著促进骨折愈合早期（11 d）促进血管生成相关基因的表达，改善骨折处小鼠中血管生成滞后的现象。

Aggrecaen 是软骨细胞增殖时软骨基质形成的重要蛋白聚糖，MMP-13 为软骨基质降解的标志性酶（图 4）。在术后 11 d 时，与 Sham 组相比，OVX 组中 Aggrecaen 和 MMP-13 mRNA 的表达量显著升高（P＜0.01），而 AKM 组中两者的表达量较模型组分别降低了 40.6%（P＜0.01）、18.2%。在术后 24 d 时，OVX 组 Aggrecaen 和 MMP-13 mRNA 的表达水平显著高于 Sham 组，而 AKM 降低了两者与 Sham 组的表达量，分别降低了 32.5%（P＜0.05）、37.6%（P＜0.05）。这表明 AKM 在骨折愈合早期（11 d）已经加快了软骨形成及降解相关指标的表达，促进了软骨愈合的形成。

BMP-2、Collal、OCN、TGF-β1 是新生骨形成中的关键因子。由图 5 可知，在骨折后 11 d 时，BMP-2 的表达各组间无显著变化，OVX 组中 Collal、OCN、TGF-β1 的表达显著低于 Sham 组，AKM 组较 OVX 组 3 者的表达水平分别提高了 18.5%（P＜0.05）、121.7%、63.2%（P＜0.01）。24 d 时，与 Sham 组相比，OVX 组中 BMP-2、OCN、Collal mRNA 的表达量显著低于 Sham 组。灌胃 AKM 后，BMP-2、OCN、TGF-β1、Collal 的表达分别升高了 39%、33.3%、33.7%（P＜0.05）、25.4%（P＜0.01）。表明 AKM 在骨折后 11 d 及 24 d 均能促进骨形成相关基因的表达，促进骨性骨痂的形成。

注：*P＜0.05，**P＜0.01，与假手术组比较；aP＜0.05，bP＜0.01 与模型组比较（图 3～图 5 同）。
Note: *P＜0.05，**P＜0.01 vs Sham group; aP＜0.05，bP＜0.01 vs OVX group.

图 3 AKM 对促血管生成因子 mRNA 表达的影响
Fig. 3 Effects of AKM on mRNA expression of pro-angiogenic factors

图 4 AKM 对软骨形成及降解 Marker mRNA 表达的影响
Fig. 4 Effects of AKM on mRNA expression of Cartilage formation and degradation marker
3 讨论

本实验通过双侧去卵巢法模拟妇女绝经后的骨丢失，建立骨质疏松症的动物模型。然后在直视状态下，对小鼠右股骨上 1/3 部位横切，建立开放性骨质疏松性骨折模型。这已经成为模拟人类绝经后骨质疏松性骨折较常用的动物模型[14]。本实验所建立的开放性骨质疏松性骨折模型的愈合方式以软骨内化骨为主。在软骨内化骨修复过程中，首先由软骨细胞形成软骨，随后软骨细胞的成骨分化，软骨基质钙化溶解，新生血管长入，成骨细胞出现并分泌骨基质，最终完成骨的修复过程。

一般认为，小鼠骨折后 3 d 代表炎症期，10 d 代表软骨形成高峰期，21 d 代表骨形成和重建过程[15]。所以本实验选择 5、11、24、35 d 作为观察点，从血清生化指标和骨痂的组织形态变化研究了 AKM 对小鼠骨质疏松性骨折的促进作用，并对其机制进行探讨。此外，本实验中所用的受实验 AKM 的氟含量为 125 mg/kg，经计算得每天灌胃小鼠氟的剂量为 1.49×10^{-5} mg/kg・BW。研究表明，人每天摄入至少 8 mg 以上的氟（相当于小鼠每天按 0.1 mg/kg・BW 灌氟），才有骨密度上的增加[16]。这远远超过了灌胃 AKM 所含氟的剂量，所以本实验中 AKM 所含的氟不足以对骨折小鼠的骨形成产生影响。

VEGF 和 BALP 分别反映血管生成和成骨细胞活性。本实验血清数据表明，AKM 可以在骨折愈合早期（5 和 11 d）显著提高 VEGF 的水平和 BALP 的活力。提示 AKM 能加速骨愈合晚期的血管生成，提高成骨细胞活性。同时，组织形态学显示，AKM 的干预加快了软骨细胞的成熟肥大，软骨基质钙化溶解，新生血管长入，成骨细胞出现并分泌骨基质，最终完成骨的修复过程。这共同说明了 AKM 可以促进小鼠骨质疏松性骨折愈合进程。

本实验选取骨折后 11 和 24 d 2 个重要时期，进一步探讨了 AKM 促进软骨内化骨愈合的机制。在骨稳定发展期中，血管生成与骨形成是紧密联系在一起的[17]。除 VEGF 外，Angl 和 PDGF-BB 也是有力的血管再生诱导因子。Xic[19]等证明在骨重建中破骨细胞前体分泌的 PDGF-BB 能够募集血管内皮祖细胞（EPCS）和间充质干细胞（MSCS），促进血管生成及骨生成。CD31 又称为血小板内皮细胞黏附分子。有研究发现，CD31 参与血管再生的全过程，常被用于判断血管再生程度[20]。本实验结果显示，AKM 能在术后 11 d 增加 Angl、PDGF-BB 和 CD31 mRNA 的表达，且在 24 d KPP 组中 Ang1、PDGF-BB 又显著低于 OVX 组。提示血管生成贯穿软骨形成及骨折愈合过程，且 AKM 能够增加血管生成相关基因的表达，从而加速断端微血管的新生重建。Aggrecan、MMP-13 是软骨基质形成及降解的标志性物质，两者可以反映软骨形成及退化的情况。本实验结果显示，AKM 组在术后 11 及 24 d Aggrecan、MMP-13 mRNA 的表达量都低于 OVX
组，提示AKM在11 d之前就已经加快了软骨的形成及退化，从而加快了软骨内化生进程。此外，本研究中骨折后24 h各组中Aggrecan、MMP-13 mRNA的表达量均低于11 d，提示软骨细胞的增殖及基质降解的高峰期郡主要发生在骨折愈合早期(11 d)。BMP-2和TGF-β1都属于转化生长因子β超家族。Jin H [21]等认为BMP-2参与骨形成中的各个阶段，在多种细胞中均有表达。本实验中，在骨折后11及24 dBMP-2 mRNA表达量均较高，说明BMP-2在软骨细胞及成骨细胞中均表达。有研究证实，TGF-β1不仅可促进骨和软骨的形成[22]，而且它在体内能够控制间充质细胞、成骨细胞、软骨细胞及破骨细胞的分化[23]，是骨吸收和修复之间有力的调节因子。本研究结果表明，AKM能在11和24 d促进BMP-2、TGF-β1、Collα1、OCN mRNA的表达。提示AKM可以在骨折后11和24 d通过促进骨形成指标，加快骨折愈合中新生骨的形成及骨改建过程。

综上所述，AKM能通过促进血管生成、软骨肥大分化及新生骨形成促进软骨内成骨，从而加速骨质疏松小鼠的骨折愈合。

参考文献